

Lecture Notes in Computer Science 5340
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sandeep Kulkarni André Schiper (Eds.)

Stabilization,
Safety, and Security
of Distributed Systems

10th International Symposium, SSS 2008
Detroit, MI, USA, November 21-23, 2008
Proceedings

13

Volume Editors

Sandeep Kulkarni
Department of Computer Science and Engineering
Michigan State University
East Lansing, MI, USA
E-mail: sandeep@cse.msu.edu

André Schiper
École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland
E-mail: andre.schiper@epfl.ch

Library of Congress Control Number: 2008938955

CR Subject Classification (1998): C.2.4, C.3, F.1, F.2.2, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-89334-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89334-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12566174 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 10th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), held November
21–23, 2008 in Detroit, Michigan USA.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), which was
first held at Austin in 1989. From the second WSS in Las Vegas in 1995, the fo-
rum was held biennially, at Santa Barbara(1997), Austin (1999), Lisbon (2001),
San Francisco (2003) and Barcelona (2005). The title of the forum changed to
the Symposium on Self-Stabilizing Systems (SSS) in 2003. Since 2005, SSS was
run annually, and in 2006 (Dallas) the scope of the conference was extended
to cover all safety and security-related aspects of self-* systems. This extension
followed the demand for self-stabilization in various areas of distributed com-
puting including peer-to-peer networks, wireless sensor networks, mobile ad-hoc
networks, robotic networks. To reflect this change, the name of the symposium
changed to the International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS).

This year we received 43 submissions from 13 countries. Most submissions
were from the USA and France. Each submission was carefully reviewed by
three to six Program Committee members with the help of external reviewers.
For the first time a rebuttal phase allowed the authors to react to the reviews
before the discussion of the papers within the Program Committee. Out of the 43
submissions, 17 excellent papers were selected for presentation at the symposium,
which corresponds to an acceptance rate of 40%. It can be noted that the highest
acceptance rate was for papers with keywords sensor networks (86%), MANETs
(67%), and security of sensor and mobile networks protocols (67%). Interestingly,
the best paper award (a recent tradition is SSS) was given to a paper without
any of these keywords, namely, to Peter Robinson and Ulrich Schmid for the
paper “The Asynchronous Bounded-Cycle Model.” In addition to the regular
papers, the symposium included three invited keynotes that covered the large
spectrum of topics of the symposium: “Primitives for Physical Trust” by Anish
Arora, “Distributed Algorithms and VLSI” by Ulrich Schmid, and “Trustworthy
Services and the Biological Analogy” by Mike Reiter.

We thank all the members of the Program Committee and their external
reviewers for their thorough work and for the time they spent selecting the best pa-
pers. Paper submission, selection, and generation in the proceedings was greatly
eased by the use of the EasyChair conference system (http://www.easychair.
org). We wish to thank the EasyChair creators and maintainers for their com-
mitment to the scientific community. We also thank the members of the Steering
Committee for their invaluable advice. We gratefully acknowledge the Organizing

VI Preface

Committee members for their generous contribution to the success of the sym-
posium. Finally, we wish all the participants a fruitful and enjoyable symposium.

November 2008 Sandeep Kulkarni
André Schiper

Organization

Program Chairs

Sandeep Kulkarni
André Schiper

Program Committee

Anish Arora
Mahesh Arumugam
Levente Buttyan
Wei Chen
Alain Cournier
Ajoy Datta
Xavier Défago
Murat Demirbas
Shlomi Dolev
Felix Freiling
Roy Friedman
Sukumar Ghosh
Mohamed Gouda
Yong Guan
Constance Heitmeyer
Ted Herman
Lisa Higham

Jaap-Henk Hoepman
Martin Hutle
Alex Liu
Jean-Philippe Martin
Achour Mostéfaoui
Mikhail Nesterenko
Guevara Noubir
Rui Oliveira
Fernando Pedone
Ravi Prakash
Ulrich Schmid
Alex Shvartsman
Neeraj Suri
Sébastien Tixeuil
Philippas Tsigas
Tatsuhiro Tsuchyia

Poster Chairs

Doina Bein
Ali Ebnenasir

Local Organization

Hongwei Zhang

VIII Organization

External Reviewers

Najla Alam
Murat Ali Bayir
Doina Bein
Martin Biely
Christian Boulinier
Lasaro Camargos
�Lukasz Chmielewski
Thomas Clouser
Sylvie Delaët
Dan Dobre
Matthias Függer
Flavio Garcia
Hirotsugu Kakugawa
Jing Li
Zvi Lotker
Xuming Lu
Matthias Majuntke

Amirhossein Malekpour
Toshimitsu Masuzawa
Calvin Newport
Lucia Draque Penso
Maria Potop-Butucaru Gradinariu
Peter Robinson
Lifeng Sang
Nicolas Schiper
Jörg Schwenk
Marco Serafini
Onur Soysal
Mukundan Sridharan
Vincent Villain
Josef Widder
Reuven Yagel
Wenjie Zeng

Table of Contents

Keynote Talks

Keynote: Primitives for Physical Trust (Invited Talk) 1
Anish Arora

Keynote: Trustworthy Services and the Biological Analogy
(Invited Talk) . 2

Michael Reiter

Keynote: Distributed Algorithms and VLSI (Invited Talk) 3
Ulrich Schmid

MAC Layer Protocols

A Distributed and Deterministic TDMA Algorithm for
Write-All-With-Collision Model . 4

Mahesh Arumugam

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 19
Lyes Dekar and Hamamache Kheddouci

Wireless Networks I

Duty Cycle Stabilization in Semi-mobile Wireless Networks 32
Jing Li and Anish Arora

DISH: Distributed Self-Healing: In Unattended Sensor Networks 47
Di Ma and Gene Tsudik

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 63
Adnan Vora, Mikhail Nesterenko, Sébastien Tixeuil, and
Sylvie Deläet

Stabilizing Algorithms I

Self-stabilizing Numerical Iterative Computation . 79
Ezra N. Hoch, Danny Bickson, and Danny Dolev

A Self-stabilizing 2
3 -Approximation Algorithm for the Maximum

Matching Problem . 94
Fredrik Manne, Morten Mjelde, Laurence Pilard, and
Sébastien Tixeuil

X Table of Contents

Self-Stabilizing Leader Election in Optimal Space . 109
Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula

Stabilizing Algorithms II

Tiara: A Self-stabilizing Deterministic Skip List . 124
Thomas Clouser, Mikhail Nesterenko, and Christian Scheideler

Local Synchronization on Oriented Rings . 141
Doina Bein, Ajoy K. Datta, Chitwan K. Gupta, and
Lawrence L. Larmore

Stabilization of Max-Min Fair Networks without Per-flow State 156
Jorge A. Cobb and Mohamed G. Gouda

Wireless Networks II

Convergence Time Analysis of Self-stabilizing Algorithms in Wireless
Sensor Networks with Unreliable Links . 173

Hirotsugu Kakugawa and Toshimitsu Masuzawa

Self-stabilizing Mobile Robot Formations with Virtual Nodes 188
Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte

An Application of Specification-Based Design of Self-stabilization to
Tracking in Wireless Sensor Networks . 203

Murat Demirbas and Anish Arora

Security and System Models

Our Brothers’ Keepers: Secure Routing with High Performance 218
Alex Brodsky and Scott Lindenberg

Pharewell to Phishing . 233
Taehwan Choi, Sooel Son, Mohamed G. Gouda, and Jorge A. Cobb

The Asynchronous Bounded-Cycle Model . 246
Peter Robinson and Ulrich Schmid

Tutorial Abstract

Virtual Infrastructure . 263
Shlomi Dolev

Author Index . 265

Keynote: Primitives for Physical Trust

Anish Arora

Department of Computer Science and Engineering
The Ohio State University

Columbus Ohio 43210, USA
anish@cse.ohio-state.edu

Abstract. This talk explores the question of whether wireless communi-
cation can achieve security - confidentiality (unicast and broadcast), au-
thentication, non-repudiation, anonymity - without assuming any shared
secrets and using only low-cost computation primitives. The key idea is
to exploit physical characteristics of the network medium to develop a
basis of physical primitives that suffice for rethinking a security protocol
suite.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Keynote: Trustworthy Services and

the Biological Analogy

Michael Reiter

Department of Computer Science
University of North Carolina at Chapel Hill

Campus Box 3175, Sitterson Hall
Chapel Hill, North Carolina 27599-3175, USA

reiter@cs.unc.edu

Abstract. Biological systems survive through a combination of redun-
dancy, diversity and modularity. It has been argued that these principles
can also be applied to construct information services that survive a vari-
ety of hostile attacks, including even the compromise of computers that
help implement the service. Despite nearly 30 years of research to advance
these principles and to apply them to the construction of trustworthy ser-
vices, each remains an active and fruitful topic of research. In this talk
we will describe recent progress in achieving redundancy, diversity and
modularity, and in using these to implement trustworthy services. This
progress, we will argue, is paving the way to next-generation services
that are significantly more resilient than todays. We will also discuss
challenges that remain in achieving this goal.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Keynote: Distributed Algorithms and VLSI

Ulrich Schmid�

Technische Universität Wien
Embedded Computing Systems Group (E182/2)

Treitlstrasse 1-3, A-1040 Vienna (Austria)
s@ecs.tuwien.ac.at

Abstract. Shrinking feature sizes and increasing clock speeds are the
most visible signs of the tremendous advances in VLSI (Very Large Scale
Integration). Modern VLSI chips can no longer be viewed as monolithic
blocks of synchronous hardware, where all state transitions occur simul-
taneously. Moreover, the reduced voltage swing needed for high clock
speeds and low power consumption dramatically increases the adverse
effects of particle hits, crosstalk and ground bouncing, and, hence, leads
to much higher failure rates. As a consequence, modern VLSI devices
have much in common with the loosely-coupled distributed systems that
have been studied by the fault-tolerant distributed algorithms commu-
nity for decades. This keynote will address ways of utilizing some of the
existing research in the VLSI context, and identify new and challenging
distributed computing research problems emanating from this important
application domain.

� This work is supported by the bm:vit FIT-IT project DARTS (proj. no. 809456-
SCK/SAI) and the Austrian Science Foundation (FWF) projects P17757 and
P20529.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Distributed and Deterministic TDMA

Algorithm for Write-All-With-Collision Model

Mahesh Arumugam

Cisco Systems, Inc.,
San Jose, CA 95134
maarumug@cisco.com

Abstract. Several self-stabilizing time division multiple access (TDMA)
algorithms are proposed for sensor networks. Such algorithms enable
the transformation of programs written in abstract models considered
in distributed computing literature into a model consistent with sensor
networks, i.e., write all with collision (WAC) model. Existing TDMA
slot assignment algorithms have one or more of the following properties:
(i) compute slots using a randomized algorithm, (ii) assume that the
topology is known upfront, and/or (iii) assign slots sequentially. If these
algorithms are used to transform abstract programs into programs in
WAC model then the transformed programs are probabilistically correct,
do not allow the addition of new sensors, and/or converge in a sequential
fashion. In this paper, we propose a self-stabilizing deterministic TDMA
algorithm where a sensor is aware of only its neighbors. We show that
the slots are assigned to the sensors in a concurrent fashion and starting
from arbitrary initial states, the algorithm converges to states where
collision-free communication among the sensors is restored. Moreover,
this algorithm facilitates the transformation of abstract programs into
programs in WAC model that are deterministically correct.

1 Introduction

One of the important concerns in programming distributed computing platforms
is the model of computation used to specify programs. Programs written for
platforms such as sensor networks and embedded systems often have to deal
with several low level challenges of the platform (e.g., communication, message
collision, race conditions among different processes, etc). Therefore, to simplify
programming, it is important to abstract such low level issues. In other words,
the ability to specify programs in an abstract model and later transform them
into a concrete model that is appropriate to the platform is crucial.

Transformation of programs has been studied extensively (e.g., [1,2,3,4,5,6]).
These transformations cannot be applied for sensor networks as the model of
computation in sensor networks is write all with collision (WAC) model. In
WAC model, whenever a sensor executes an action, it writes the state of all
its neighbors in one atomic step. However, if two neighbors j and k of a sensor
(say i) try to execute their write actions at the same time then, due to collision,

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 4–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Distributed and Deterministic TDMA Algorithm for WAC Model 5

state of i will remain unchanged. The actions of j and k may update the state
of their other neighbors successfully.

Recently, several approaches have been proposed to transform programs writ-
ten in abstract models considered in distributed computing literature into pro-
grams in WAC model [7,8,9,10]. In [7], the author proposes a transformation to
correctly simulate an abstract program in sensor networks. This algorithm uses
carrier sensor multiple access (CSMA) to broadcast the state of a sensor and,
hence, the transformed program is randomized. And, the algorithm in [9] uses
time division multiple access (TDMA) that ensures collision-free write actions.
In this approach, in WAC model, each sensor executes the enabled actions in the
TDMA slots assigned to that sensor. And, the sensor writes the state of all its
neighbors in its TDMA slots. If the TDMA algorithm in [11], a self-stabilizing
and deterministic algorithm designed for grid-based topologies, is used with [9]
then the transformed program in WAC model is self-stabilizing and determinis-
tically correct for grid-based topologies. And, if randomized TDMA algorithms
proposed in [8,12] are used with [9] then the transformed program is probabilis-
tically correct. Finally, the algorithm in [10], a self-stabilizing and deterministic
TDMA algorithm for arbitrary topologies, allows one to obtain programs in
WAC model that are deterministically correct for arbitrary topologies.

In this paper, we are interested in stabilization preserving deterministic trans-
formation for WAC model. As mentioned above, a self-stabilizing deterministic
TDMA algorithm enables such a transformation. One of the drawbacks of ex-
isting self-stabilizing deterministic TDMA algorithms (e.g., [10]) is that the re-
covery is sequential. Specifically, in [10], whenever the network is perturbed to
arbitrary states (e.g., slots are not collision-free), a distinguished sensor (e.g.,
base station) initiates recovery and each sensor recomputes its slots one by one.
However, it is desirable that the network self-stabilizes in a distributed and con-
current manner (without the assistance of distinguished sensors).

To redress this deficiency, in this paper, we propose a self-stabilizing de-
terministic TDMA algorithm that provides concurrent recovery. In this algo-
rithm, whenever a sensor observes that the slots assigned to its neighbors are
not collision-free, it initiates a recovery. As a result, its neighbors recover to
legitimate states (i.e., the slots are collision-free) and the network as a whole
self-stabilizes concurrently. We show that the algorithm supports addition or re-
moval of sensors in the network. While a removal of a sensor does not affect the
normal operation of the network, our algorithm ensures that the slots assigned
to removed sensors are reused. And, our algorithm supports controlled addition
of new sensors in the network.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we introduce the models of computation considered in distributed
computing platforms and formally state the problem definition of TDMA. In
Section 3, we present our distributed self-stabilizing TDMA slot assignment al-
gorithm. And, in Section 4, we discuss extensions to our algorithm. Subsequently,
in Section 5, we compare our algorithm with related work. Finally, in Section 6,
we provide concluding remarks.

6 M. Arumugam

2 Preliminaries

In this section, we define the write all with collision model, formally state the
problem, and list the assumptions made in this paper.

2.1 Write-All-With-Collision (WAC) Model and Collision Detectors

A computation model limits the variables that a program can read and write.
Program actions are split into a set of processes (i.e., sensors). Each action is
associated with one of the processes in the program.

In WAC model, each sensor consists of write actions (to be precise, write-all
actions). In one atomic step, a sensor can update its own state and the state of
all its neighbors. However, if two or more sensors simultaneously try to update
the state of a sensor, say, k, then the state of k remains unchanged. Thus, WAC
model captures the fact that a message sent by a sensor is broadcast. But, if
multiple messages are sent to a sensor simultaneously then, due to collision, it
receives none.

It is clear that WAC model does not provide any indication of collision. How-
ever, the physical layer of the communication stack may be required to expose
state of the communication medium (e.g., collision information) to the higher
layers of the stack. To enable such notifications, collision detectors are proposed
in [13]. Collision detectors provide receiver-based notifications when message loss
is detected. In [13], the authors identify 6 classes of collision detectors based on
completeness and accuracy. In the context of this paper, we integrate eventually
accurate collision detector to our model. In an eventually accurate collision de-
tector, there exists a frame, say fr, such that if k detects a collision in fr′ ≥ fr

then k does not receive some messages that were broadcast in fr′ .

2.2 Problem Statement

Distributed TDMA slot assignment. TDMA is the problem of assigning
communication time slots to each sensor. Two sensors j and k cannot transmit
in the same slot if their communication interferes with each other. In other
words, j and k cannot transmit in the same slot if the communication distance
between them is less than or equal to 2. To model this requirement, we consider
the sensor network as a graph G=(V, E) where V is the set of all sensors and E
is the communication topology of the network. More precisely, if sensors u ∈ V
and v ∈ V can communicate with each other then the edge (u, v) ∈ E. Finally,
distanceG(u, v) identifies the communication distance between u and v in G. The
communication distance is the number of links in the shortest path between the
two sensors. Thus, the problem statement of TDMA is shown in Figure 1.

Definition 1. (TDMA frame) In TDMA, time is partitioned into fixed sized
frames. Each TDMA frame is divided into fixed sized slots. In this paper, we
ensure uniform bandwidth allocation among sensors. Therefore, each sensor is
assigned one slot in every TDMA frame. A sensor is allowed to transmit in the
slots assigned to it.

A Distributed and Deterministic TDMA Algorithm for WAC Model 7

Problem Statement: Distributed TDMA Slot Assignment
Consider the communication graph G=(V,E); Given a sensor j ∈ V , assign
time slots to j such that the following condition is satisfied:

k ∈ V ∧ k �= j ∧ distanceG(j, k) ≤ 2 =⇒ slot.j ∩ slot.k=∅
where slot.i identifies the slots assigned to sensor i.

Fig. 1. Problem statement of distributed TDMA slot assignment

Definition 2. (TDMA period) The length of the TDMA frame is called the
TDMA period. More specifically, it is the interval between the slots assigned to
a sensor in consecutive frames.

Distance 2 coloring. The problem statement of TDMA is similar to the prob-
lem of distance 2 coloring. Distance 2 coloring algorithm assigns colors to all the
sensors in the network such that the colors assigned to distance 2 neighborhood
of a sensor are unique. The color assigned to a sensor identifies the initial TDMA
slot of that sensor. The sensor can compute its subsequent TDMA slots using
TDMA period. Ideally, TDMA period P = (d2 + 1), where d is the maximum
degree of the network. (We refer the reader to [10] for a proof that the number
of colors required to obtain distance 2 coloring is at most d2 +1.) Thus, Figure 2
states the problem definition of distance 2 coloring.

Self-stabilization. An algorithm is self-stabilizing iff starting from an arbitrary
state, it: (a) recovers to legitimate state and (b) upon recovery continues to be in
legitimate states forever [14,15]. Extending this definition, we have the problem
statement of a self-stabilizing TDMA slot assignment algorithm as shown in
Figure 3.

2.3 Assumptions

In this paper, we do not assume the presence of a base station. In our algo-
rithm, the sensors collaborate among themselves to obtain distance 2 coloring
and TDMA slot assignments. We assume that each sensor knows the IDs of the
sensors that it can communicate with. This assumption is reasonable since the
sensors collaborate among their neighbors when an event occurs. To simplify
the presentation of the algorithm, we assume that frame numbers are not cor-
ruptible. However, we note that relaxing this assumption does not affect the
correctness of the algorithm. Moreover, we can extend the algorithm to make

Problem Statement: Distance 2 Coloring
Consider the communication graph G=(V,E); Given a sensor j ∈ V , assign
a color to j such that the following condition is satisfied:

k ∈ V ∧ k �= j ∧ distanceG(j, k) ≤ 2 =⇒ color.j �= color.k
where color.i identifies the color assigned to sensor i.

Fig. 2. Problem statement of distance 2 coloring

8 M. Arumugam

Problem Statement: Self-Stabilizing TDMA Slot Assignment
Consider the communication graph G=(V, E); A TDMA slot assignment algorithm
is self-stabilizing iff starting from arbitrary initial states, the algorithm recovers to the
following state:

j ∈ V ∧ k ∈ V ∧ k �= j ∧ distanceG(j, k) ≤ 2 =⇒ slot.j ∩ slot.k=∅
and continues to remain in this state forever.

Fig. 3. Problem statement of self-stabilizing TDMA slot assignment

frame numbers bounded. We assume that the maximum degree of the graph does
not exceed a certain threshold, say d. This can be ensured by having the deploy-
ment follow a certain geometric distribution or using a predetermined topology.
Finally, we assume that the clocks of the sensors are synchronized. We can adopt
the approach discussed in [10] to synchronize the clocks of the sensors.

3 TDMA Slot Assignment Algorithm

In this section, we present our distributed and deterministic TDMA algorithm. In
Section 3.1, we give an outline of the algorithm. Then, in Section 3.2, we present
the algorithm in detail. We discuss how the network self-stabilizes starting from
arbitrary states to states where the slots are assigned as identified in Figure 3.
Subsequently, in Section 3.3, we illustrate our algorithm with an example.

3.1 Outline of the Algorithm

Initially, the colors assigned to the sensors may be arbitrary. As a result, the
communication among the sensors may not be collision-free. To achieve collision-
free communication among the sensors, we adopt distributed reset (e.g., [16,17])
approach. More specifically, whenever collisions are detected for a particular slot
(i.e., color) for a threshold number of consecutive TDMA frames (say, at j), the
algorithm resets the colors of appropriate sensor(s) in the neighborhood of j. In
other words, a reset computation is used to update the colors assigned to the
sensors such that the sensors in distance 2 neighborhood of j have unique colors
and, thus, ensure that slots assigned to them are collision-free at j.

Towards this end, j schedules a reset computation in its current TDMA slots.
It schedules the reset such that the following requirements are satisfied: (i) reset
computations of others sensors in the distance 2 neighborhood of j do not inter-
fere with each other and (ii) when j initiates reset, the sensors in the distance
3 neighborhood of j have stopped transmitting. The first requirement ensures
that only one reset computation is active in a given neighborhood at any in-
stant. Otherwise, simultaneous resets in a distance 2 neighborhood may result
in collisions and/or sensors choosing conflicting colors. The second requirement
ensures that the reset messages and update messages are communicated in a
collision-free manner.

Whenever a sensor, say k, receives the reset message from j, first, it updates
the color information it maintains about its distance 1 and distance 2 neighbors.

A Distributed and Deterministic TDMA Algorithm for WAC Model 9

Next, it checks if it has to change the color in response to the reset. If k needs
to update its color, it chooses a non-conflicting color among the sensors in its
distance 2 neighborhood. And, subsequently, k broadcasts change color message
in its newly computed slots.

Now, whenever a sensor, say l, receives the change color message from k, first,
it cancels any scheduled reset computations. Subsequently, l updates the color
information it maintains about its distance 1 and distance 2 neighbors. When
j receives change color message, it sends restart message to signal its distance 3
neighborhood to restart application communication. Thus, the algorithm resets
the neighborhood of j to deal with a collision at j. However, note that one reset
computation may not be sufficient to restore the state of the entire network.

3.2 Reset Computation and Slot/Color Assignment

In this section, we discuss the algorithm in detail. This is a 5-step algorithm:
(1) observe collision and schedule reset computation, (2) send reset message, (3)
update color, (4) notify color, and (5) restart communication. These steps may
be repeated until the network self-stabilizes to legitimate states. (For reasons of
space, we do not include a pseudo code for the proposed algorithm.)

Step 1: Observe collision and schedule reset computation. If a sensor,
say j, observes collision at slot cx (i.e., color cx) for a threshold number of
consecutive frames then it schedules a reset computation. Towards this end,
first, j appends cx to collisions.j, the list of collision slots it has observed so
far. Also, it adds (fc.j, cx) to timestamp.j, where fc.j is the frame in which j
observed the collision at slot cx. If j observed a collision for the first time then
j determines the slot in which it can send a reset message. Sensor j schedules a
reset computation such that requirements identified in Section 3.1 are met.

Requirement 1: Ensure only one active reset in the neighborhood. To satisfy
this requirement, j schedules the reset computation in TDMA frame freset.j =
fc.j+ID.j+D3timeout, where ID.j is the ID of sensor j and D3timeout is defined
below. This ensures that if two sensors observe a collision simultaneously, then
their resets are scheduled in unique frames. On the other hand, if the sensors
observe a collision in different frames, it is possible that their resets are scheduled
in the same frame. However, before a sensor initiates a reset, requirement 2
ensures that the distance 3 neighborhood has stopped. As a result, the sensor
that observed a collision earlier will be able to proceed.

Requirement 2: Ensure distance 3 neighborhood has stopped. Suppose j has
scheduled reset in freset.j. Before j initiates reset, it has to wait until its dis-
tance 3 neighborhood stops transmitting messages. Towards this end, j stops
transmitting for at least D3timeout frames before it fires the reset. D3timeout is
the number of TDMA frames required for distance 3 neighborhood of j to stop
transmitting messages. Specifically, when j stops, its neighbors will notice that
j has stopped. As a result, distance 1 neighbors of j stop. Likewise, distance
2 and distance 3 neighbors of j stop. To prevent false positives, neighbor, say
l ∈ N.j, stops only after it detects that j has stopped for a threshold number

10 M. Arumugam

of consecutive frames, stoptimeout. Therefore, in order to ensure that distance 3
neighborhood of a sensor has stopped, D3timeout ≥ 3 × stoptimeout.

Step 2: Send reset message. Each sensor, say j, maintains the state of
its distance 2 neighborhood: nbrClr.j (contains the state of distance 1 neigh-
bors of j) and dist2Clr.j (contains the state of distance 2 neighbors of j). Each
entry in nbrClr.j contains color assignment and the last frame in which j or
its neighbors received a message from the corresponding sensor. Likewise, each
entry in dist2Clr.j contains color assignment and the last frame in which one of
the neighbors of j received a message from the corresponding sensor. Initially,
nbrClr.j and dist2Clr.j contain arbitrary color assignments that may not reflect
the accurate state of its distance 2 neighborhood.

Notation. An entry in nbrClr.j is denoted as (k, ck, fk); this indicates that j
last received a message from k in frame fk and in slot (i.e., color) ck. Entries in
dist2Clr.j are denoted similarly. Additionally, we use “-” to wildcard or ignore
a field in an entry. For example, (−, cx,−) indicates that we are interested in
entries that have the color cx. Additionally, we denote the current frame at j as
fcurrent.j.

Sensor j initiates a reset in freset.j only if it has not stopped transmitting in
response to another reset. From Step 1, we note that j sends the reset message to
its distance 1 neighbors in a collision-free manner. The reset message format is
shown in Figure 4. This includes the state of distance 1 neighbors that j knows
currently, list of collisions and their timestamps, the sensor that should update
its color in response to this reset, and the initiator of the reset (i.e., j). Sensor
j selects the sensor that should update its color based on IDs of the neighbors
that j did not hear for a threshold number of consecutive frames.

Theorem 1. Reset computation initiated by any sensor executes in a collision-
free manner.

Proof. Suppose two reset computations execute simultaneously in a distance 2
neighborhood. Let k and l be two unique sensors that have initiated the reset
such that distanceG(k, l) ≤ 2. Both k and l should have observed a collision
in the same frame and scheduled resets to start at the same frame. Otherwise,
either one of them would have observed that the neighbors have stopped in

rmj .neighborState
neighbor color lastReceived

j color.j fcurrent .j
nbrClr.j

rmj .collisionInfo collisions.j
rmj .resetTimestamp timestamp.j

rmj.sensorToChange
l, where l ∈ N.j is the sensor with lowest ID for which j
did not hear any thing for a threshold number of frames

rmj .initiator j

Fig. 4. Reset message of j, rmj

A Distributed and Deterministic TDMA Algorithm for WAC Model 11

if (j = rmj .initiator ∧ (j, cj , −) ∈ rmj .neighborState)
nbrClr.k = {nbrClr.k − (j, −, −)} ∪ (j, cj , fcurrent .k)

if (p ∈ N.k ∧ (p, cp, f1) ∈ rmj .neighborState ∧ (p,−, f2) ∈ nbrClr.k ∧ f2 < f1)
nbrClr.k = {nbrClr.k − (p, −, −)} ∪ (p, cp, f1)

else if (p �∈ N.k ∧ (p, cp, f1) ∈ rmj .neighborState ∧ (p, −, f2) ∈ dist2Clr.k ∧ f2 < f1)
dist2Clr.k = {dist2Clr.k − (p, −, −)} ∪ (p, cp, f1)

// addition/removal of sensors are updated in nbrClr.k and dist2Clr.k as
discussed in Section 4

Fig. 5. Updating nbrClr.k and dist2Clr.k of sensor k

response to a reset of the other and, hence, it would have stopped as well.
Therefore, we have, freset.k=freset.l. In other words, fc.k+ID.k+D3timeout =
fc.l + ID.l + D3timeout. Without loss of generality, assume that ID.k < ID.l.
Now, we have fc.k > fc.l. More specifically, l observed the collision before k did.
This is a contradiction. ��

Step 3: Update color. Whenever a sensor, say k, receives the reset message
rmj , first, it cancels any scheduled reset. Next, it updates its neighbor state
using the information in rmj as shown in Figure 5. (Note that k updates an
entry in nbrClr.k or dist2Clr.k only if the initiator j had received a message
from the corresponding sensor most recently than that of k.)

Sensor k then checks if it has to update its color. If k = rmj .sensorToChange
then j requires k to update its color. Sensor k updates its color as shown in
Figure 6. Specifically, if color.k is in rmj .collisionInfo, k chooses a color c from
K (i.e., the set of all available colors) such that there is no collision in slot c at
j and is unique among its distance 2 neighborhood.

Step 4: Notify color. If k = rmj .sensorToChange, it sends change color mes-
sage cmk to all its neighbors as shown in Figure 7 (regardless of whether it
changed its color or not). Specifically, k sends its color information, nbrClr.k,
and the initiator of the reset. Whenever a sensor receives change color message,
first, it cancels any scheduled resets. Next, it updates its nbrClr and dist2Clr
similar to the discussion shown in Figure 5. Specifically, if l receives cmk, it
updates nbrClr.l with (k, ck, fcurrent.l), where (k, ck,−) ∈ cmk.neighborState.
Similarly, l updates nbrClr.l and dist2Clr.l based on cmk.

Theorem 2. If a sensor updates its color in response to a reset then the change
color message of that sensor is communicated in a collision-free manner.

if (k = rmj .sensorToChange ∧ color.k ∈ rmj .collisionInfo) {
potentialColors = {c|c ∈ K ∧ c �∈ rmj .collisionInfo ∧ (−, c, −) �∈ nbrClr.k

∧(−, c, −) �∈ dist2Clr.k}
color.k = min(potentialColors)

}

Fig. 6. Updating color assignment of sensor k

12 M. Arumugam

cmk.neighborState
neighbor color lastReceived

k color.k fcurrent .k
nbrClr.k

cmk.initiator j

Fig. 7. Change color message of k, cmk

Proof. Let j be the initiator of the reset. And, l ∈ N.j updates its color in
response to the reset of j. When j initiates the reset (rmj), distance 3 neighbors
of j have stopped transmitting. Therefore, when l sends change color message
cml, neighbors of l will receive it successfully. Hence, all neighbors of l will get
the latest color assigned to l. ��

Step 5: Restart communication. Whenever j initiates a reset, it expects to
receive a change color message from rmj .sensorToChange before its next allotted
slot in fcurrent.j + 1 frame. If j receives the change color message from the
sensor that changed the color in response to reset of j, j cleans collisions.j and
timestamp.j. Then, it signals its neighbors to restart application communication.
Specifically, it sends restart message, smj ; the format of smj is the same as
change color message (cf. Figure 7). Once a sensor receives smj , it updates nbrClr
and dist2Clr and starts application communication in its slots. Continuing in
this fashion, the distance 3 neighborhood of j restarts. Note that the restart
operation updates the color assignment of l = rmj .sensorToChange at distance
2 neighborhood of l, potentially causing collisions at some distance 2 neighbors of
l. When a sensor hears a restart message or collision, it restarts communication.

On the other hand, if l = rmj .sensorToChange did not send change color
message (possibly, due to failure of l) then j marks l as potentially failed. And,
it cleans collisions.j and timestamp.j. Also, it sends a restart message. In future
resets at j, j will not set l in rmj .sensorToChange. If l has not failed, j will
remove l from the list of potentially failed sensors when j hears from l.

Theorem 3. If a sensor updates its color in response to a reset, eventually, the
distance 2 neighborhood of that sensor learns the state of the sensor.

Proof. Suppose k ∈ N.j updates its color in response to a reset initiated by
j. Distance 3 neighborhood of j have stopped transmitting in response to the
reset of j. Therefore, we can conclude that sensors in distance 2 neighborhood
of k have stopped transmitting. Now, when k sends change color message cmk,
distance 1 neighbors of k receive it successfully. When j sends restart message,
distance 2 neighbors of k are updated. Note that it is possible that when distance
1 neighbors of k forward this restart, collisions may prevent some distance 2
neighbors of k to not receive the update. Future resets will restore the state of
the neighborhood of k (cf. Figure 8 for illustration). Hence, eventually, state of
k will be updated at all sensors in its distance 2 neighborhood. ��

We note that in this algorithm at most one neighbor is recovered in any reset.
Therefore, if j observes collisions at two or more colors/slots then j may observe

A Distributed and Deterministic TDMA Algorithm for WAC Model 13

Fig. 8. Illustration of Theorem 3. (a) sensor k sends change color message cmk to all
its distance 1 neighbors. (b) sensor k forwards restart message smk to all its distance
1 neighbors. However, p, q ∈ N.k may have the same color. As a result, when p and
q forward smp and smq, some distance 2 neighbors of k may not be updated. This
collision is detected by k and it will schedule a future reset. (c) sensor p forwards smp

to its neighbors. However, sensor t such that distanceG(p, t) = 2 ∧ distanceG(j, t) > 3
may be assigned the same color as p. Future resets at s that detected this collision will
restore the neighborhood. Note that (b) is a special case of (c).

Fig. 9. Illustration of the TDMA slot assignment algorithm

collisions after this reset. Subsequent resets at j or at other sensors will eventually
restore collision-free communication at j. Thus, we have

Theorem 4. Eventually, the network self-stabilizes to the states where collision-
free communication among the sensors is restored. ��

14 M. Arumugam

3.3 Illustration

Consider the topology shown in Figure 9(a). The color assignments of each sensor
is specified along with its ID. For example, 2(1) denotes that sensor 2 is assigned
color 1. Initially, we assume that fcurrent = 0 at all sensors. From Figure 9(a),
we can note that every sensor observes a collision (shown with filled circles).

Each sensor, say j, determines the frame for reset: freset.j = fcurrent+ID.j+
ft, where ft = D3timeout (cf. Figure 9(b)). Sensor 0 sets rm0.sensorToChange =
1. As a result, sensor 1 changes its color to 2. Then, it sends a change color mes-
sage, cm1 (cf. Figure 9(d)). Once sensor 0 receives cm1, it updates its state and
sends restart message, sm0 (cf. Figure 9(e)). Once sensors 1 and 2 receive sm0,
they restart their communication. Continuing in this fashion, distance 3 neigh-
borhood of sensor 0 restart communication. As we can observe from Figure 9(f),
message communication is still not collision free. Sensors then schedule subse-
quent resets and, finally, as shown in Figure 9(g), collision-free communication is
restored. In this example, the network converges in 4ft + 18 frames. (Note that
in this illustration all sensors are within distance 3 of each other.)

4 Extensions

In this section, we show how to extend the algorithm to deal with addition/
removal of sensors. And, we present an approach to improve the bandwidth
allocation of the sensors.

4.1 Dealing with Failure of Neighbors

In our algorithm, whenever a sensor (say j) hears a collision, it schedules a reset
computation to restore collision-free communication. On the other hand, if j
does not hear a message or observe a collision in a given slot, it could be because
of the one of the following factors: (i) suppose k ∈ N.j is the neighbor that is
assigned the corresponding color; k may have failed, (ii) k may have stopped in
response to a reset, or (iii) k does not have any data to send. If a sensor fails,
the TDMA slots assigned to other sensors are still collision-free and, hence,
normal operation of the network is not affected. However, the slots assigned to
the failed sensors are wasted. In this section, we discuss an approach to reclaim
slots assigned to failed sensors.

Towards this end, first, we introduce control message. Each sensor transmits
a control message once in every Tcontrol frames. This message includes the color
assignment of the sensor and its nbrClr. And, Tcontrol is determined when the
network is deployed and is chosen based on how frequently the network changes.
If topology changes are common, a smaller Tcontrol lets the sensors to quickly
learn the state of their neighbors. On the other hand, a larger Tcontrol is more
appropriate for a network that changes only occasionally.

To reclaim the slots, we proceed as follows. Sensor j concludes that k ∈ N.j
has failed if fcurrent.j − lastReceivedk > Tcontrol, where (k,−, lastReceivedk) ∈

A Distributed and Deterministic TDMA Algorithm for WAC Model 15

nbrClr.j. In other words, if j sees that it did not receive any message from k for
more than Tcontrol frames, it concludes that k has failed.

When j concludes k has failed, it sets (k,−, failed) in nbrClr.j. And, sends con-
trol message, controlj . Whenever a sensor observes that (k,−, failed) is present
in controlj .neighborState, it marks k as failed. The active neighbors of j remove
(k,−,−) from nbrClr or dist2Clr. This allows the sensors to reuse the color as-
signed to k to other sensors (in case of dynamic addition of new sensors or during
reset computations). However, if k has not failed, it announces its presences in
its current TDMA slots by sending controlk. When neighbors of k receive this
message they update their nbrClr values. Subsequently, distance 2 neighbors of
k also restore the state of k.

4.2 Dealing with Addition of Sensors

In this section, we discuss an approach to dynamically add new sensors in the
network. This approach is similar to [10]. Suppose a sensor (say p) is added to the
network such that the maximum degree of the network is not changed. Before p
starts transmitting application messages, it listens to the message communica-
tion of its neighbors. To let p learn the colors used in its distance 2 neighborhood,
we extend our algorithm as follows.

Sensor p waits for Tcontrol frames before it participates in the network. This
allows p to learn distance 1 and distance 2 neighbors and their color assignments
(from control messages of its neighbors). After Tcontrol, p chooses a color. Next,
p announces its presence to its neighbors by sending a control message in its
newly computed slot. When a sensor receives a control message from p, it adds
p to its neighbor list and updates nbrClr. Subsequently, distance 2 neighbors of
p also learn its presence and update their dist2Clr values.

Thus, this approach allows the addition of new sensors in a neighborhood
such that it does not violate the maximum degree assumption. However, if two
or more sensors are added simultaneously, it is possible that they may choose
the same color. Since our algorithm is self-stabilizing, the network will eventually
self-stabilize to states where the color assignments are collision-free.

4.3 Improving the Bandwidth Allocation

In this section, we discuss an approach that allows the sensors to reduce the
TDMA period and, hence, get better bandwidth allocation. The intuition behind
this extension is that if cx is the maximum color used in the network, the ideal
TDMA period should be cx + 1.

Each sensor (say j) maintains maxColor.j that denotes the maximum color
used in its distance 2 neighborhood. It also maintains controlMax.j that denotes
the maximum color used in the network. Note that j may not yet have the
accurate information about the maximum color used in the network.

To improve the bandwidth allocation of the sensors, we extend the control
message (discussed in Section 4.1) as follows. Any sensor in the network may
decide to improve bandwidth allocation in the network. Let j decides to im-
prove bandwidth allocation. It sends a control message, controlj that includes

16 M. Arumugam

controlMax.k = max(controlMax.k, controlj .maxColorInfo)
fswitchOn.k = max(fswitchOn.k, controlj .switchOn)

Fig. 10. Receiving control message with maxColorInfo

controlj .maxColorInfo=max(controlMax.j,maxColor.j). Sensor j also indicates
when the sensors can switch to new TDMA period, i.e., controlj .switchOn =
fswitchOn.j, where fswitchOn.j ≥ fcurrent.j + 2 × Tcontrol. (We discuss why
this is necessary below.)

Whenever k receives controlj with maxColorInfo, k sets controlMax.k and the
frame in which it can switch to the new TDMA period as shown in Figure 10.
Sensor k includes this information in its control messages. Thus, continuing in
this fashion, each sensor will eventually learn the maximum color used in the
network, i.e., controlMax. And, each sensor also knows the ideal TDMA period
(i.e., controlMax + 1).

Once the sensors have learned the maximum color used in the network, they
can update their TDMA period. However, this operation should occur syn-
chronously. In other words, all the sensors should update their TDMA period
at the same time. Otherwise, collisions may occur. To address this issue, first,
we note the following. If the TDMA slots assigned to the sensors are consistent
then all the sensors learn the maximum color used in the network in at most
2 × Tcontrol frames, where Tcontrol is the period between two successive con-
trol messages (cf. Section 4.1). Since the initiator of this operation includes the
frame in which new TDMA period is effective, each sensor knows exactly when
to switch. Thus, the TDMA period can be updated to reflect the ideal value.

5 Related Work

Related work that deals with self-stabilizing deterministic slot assignment al-
gorithms include [10, 11, 18]. In [11], Kulkarni and Arumugam proposed self-
stabilizing TDMA (SS-TDMA). In this algorithm, the topology of the network
is known upfront and remains static. Also, a base station is responsible for pe-
riodic diffusing computations to revalidate the slots. In [10], Arumugam and
Kulkarni proposed self-stabilizing deterministic TDMA algorithm. Again, this
algorithm assumes the presence of a base station that is responsible for token
circulation. And, the slots are assigned in a sequential fashion.

In [18], Danturi et al proposed a self-stabilizing solution to dining philoso-
phers problem where a process cannot share the critical section (CS) with non-
neighboring processes also. This problem has application in distance-k coloring,
where k is the distance up to which a process cannot share CS. This algorithm
requires each process p to maintain a tree rooted at itself that spans the processes
with whom p cannot share CS.

Related work that deals with randomized algorithms for TDMA slot assign-
ment include [8, 12]. In [8], Herman and Tixeuil proposed a probabilistic fast

A Distributed and Deterministic TDMA Algorithm for WAC Model 17

clustering technique for TDMA slot assignment. In this algorithm, first, a max-
imal independent set that identifies the leaders is computed. These leaders are
then responsible for distance 2 coloring. In [12], Busch et al proposed a random-
ized algorithm for slot assignment. The algorithm operates in two phases: (1)
to compute the slots and (2) to determine the ideal TDMA period. Both these
phases are self-stabilizing and can be interleaved.

6 Conclusion

In this paper, we presented a self-stabilizing deterministic TDMA slot assign-
ment algorithm for write all with collision (WAC) model. We showed that the
algorithm allows sensors to recover concurrently and self-stabilize starting from
arbitrary states. While the convergence time of the proposed algorithm is ex-
pected to be reasonable (since concurrent recoveries initiated by sensors that
are sufficiently far apart are allowed), it can be improved further by integrating
neighborhood unique naming scheme from [8] that assigns unique IDs for sensors
within any distance 3 neighborhood.

Additionally, as discussed in [9], our algorithm is applicable in transform-
ing existing programs in abstract models considered in distributed computing
literature into programs in WAC model that are deterministically correct. This
allows one to reuse existing solutions in distributed computing for problems such
as routing, data dissemination, synchronization, and leader election in the con-
text of sensor networks. Thus, the algorithm proposed in this paper allows one
to transform such solutions and evaluate them in sensor networks. (We refer the
reader to [19] for examples of such transformations, prototype implementations
of the transformed programs, and their evaluations.)

References

1. Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in an
arbitrary system graph tree that stabilizes using read/write atomicity. In: Amestoy,
P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.)
Euro-Par 1999. LNCS, vol. 1685, pp. 824–830. Springer, Heidelberg (1999)

2. Gouda, M., Haddix, F.: The linear alternator. In: Proceedings of the Third Work-
shop on Self-stabilizing Systems, pp. 31–47 (1997)

3. Gouda, M., Haddix, F.: The alternator. In: Proceedings of the Fourth Workshop
on Self-stabilizing Systems, pp. 48–53 (1999)

4. Ioannidou, K.: Transformations of self-stabilizing algorithms. In: Malkhi, D. (ed.)
DISC 2002. LNCS, vol. 2508, pp. 103–117. Springer, Heidelberg (2002)

5. Kakugawa, H., Yamashita, M.: Self-stabilizing local mutual exclusion on networks
in which process identifiers are not distinct. In: Proceedings of the 21st Symposium
on Reliable Distributed Systems (SRDS), pp. 202–211 (2002)

6. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. Journal
of Parallel and Distributed Computing 62(5), 766–791 (2002)

7. Herman, T.: Models of self-stabilization and sensor networks. In: IWDC 2003.
LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

18 M. Arumugam

8. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wire-
less sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS
2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

9. Kulkarni, S.S., Arumugam, M.: Transformations for write-all-with-collision model.
Computer Communications 29(2), 183–199 (2006)

10. Arumugam, M., Kulkarni, S.S.: Self-stabilizing deterministic time division multiple
access for sensor networks. AIAA Journal of Aerospace Computing, Information,
and Communication (JACIC) 3, 403–419 (2006)

11. Kulkarni, S.S., Arumugam, M.: SS-TDMA: A self-stabilizing mac for sensor net-
works. In: Sensor Network Operations. Wiley, IEEE Press (2006)

12. Busch, C., M-Ismail, M., Sivrikaya, F., Yener, B.: Contention-free MAC protocols
for wireless sensor networks. In: Proceedings of the 18th Annual Conference on
Distributed Computing, DISC (2004)

13. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T.: Con-
sensus and collision detectors in wireless ad hoc networks. Distributed Comput-
ing 21(1), 55–84 (2008)

14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974)

15. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
16. Arora, A., Gouda, M.: Distributed reset. IEEE Transactions on Computers 43(9),

1026–1038 (1994)
17. Varghese, G., Arora, A., Gouda, M.G.: Self-stabilization by tree correction. Chicago

Journal of Theoretical Computer Science 3 (1997)
18. Danturi, P., Nesterenko, M., Tixeuil, S.: Self-stabilizing philosophers with generic

conflicts. In: Proceedings of the Eighth International Symposium on Stabilization,
Safety, and Security of Distributed Systems (November 2006)

19. Arumugam, M.: Rapid prototyping and quick deployment of sensor networks. PhD
thesis, Michigan State University (2006)

Distance-2 Self-stabilizing Algorithm for a

b-Coloring of Graphs

Lyes Dekar1 and Hamamache Kheddouci2

1 Université de Lyon
Lab. LIESP, Université Lyon 1, IUTA, Département Informatique

71 rue Peter Fink, F-01000 Bourg en Bresse, France
ldekar@bat710.univ-lyon1.fr

2 Université de Lyon
Laboratoire LIESP, Université Lyon 1

Bât. Nautibus, 43 bd du 11 Novembre 1918
69622 Villeurbanne Cedex, France
hkheddou@bat710.univ-lyon1.fr

Abstract. A b-coloring of a graph G is a proper k-coloring of G such
that for each color i, 1 ≤ i ≤ k, at least one vertex colored with i is
adjacent to every color j, with 1 ≤ j �= i ≤ k. This kind of coloring is
useful to decompose any system into communities, where each commu-
nity contains a vertex adjacent to all the other communities. This kind of
organization can provide improving in many fields, especially in the data
clustering. In this paper we propose a new self-stabilizing algorithm for
finding a b-coloring of arbitrary undirected connected graphs. Because
the characteristics of the b-coloring problem, the proposed self-stabilizing
algorithm use a distance-2 knowledge.

Keywords: b-coloring, self-stabilizing algorithm, clustering, data min-
ing, graphs.

1 Introduction

A coloring is called a proper k-coloring if it uses k colors such that two adjacent
vertices have different colors. Then, a b-coloring is a proper k-coloring where for
each color i, 1 ≤ i ≤ k, there exists a vertex x with color i, adjacent to vertices
colored with every color j, 1 ≤ j �= i ≤ k. Such vertices are called dominating
vertices.

The b-coloring was introduced by Irving and Manlove [16] where they pre-
sented the b-chromatic number, denoted ϕ(G), as the maximum integer k such
that G admits a b-coloring with k colors. Thus, the aim in the b-coloring prob-
lem is to color a graph with the largest number of colors, by considering the
b-coloring constraints given above. Irving and Manlove [16] also proved that
finding the b-chromatic number of any graph is a NP-hard problem and they
gave a polynomial-time algorithm for finding the b-chromatic number of trees.
This parameter was also studied for other classes of graphs like cartesian prod-
uct of graphs [17], bipartite graphs [18], power graphs of paths and cycles [6].

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 19–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 L. Dekar and H. Kheddouci

More recently, Corteel et al. [4] proved that the b-chromatic number problem
is not approximative within 120/133- ε for any ε > 0, unless P=NP. Effantin
and Kheddouci [7] proposed a distributed algorithm for a b-coloring of graphs.
The b-coloring is useful to decompose any system into communities, where each
community contains a vertex adjacent to all the other communities. This kind of
organization can provide improving in many topics such as clustering and fault
localization.

A distributed system can be modelled by a simple connected undirected graph
G = (V, E), where V is the set of vertices and E is the set of edges representing
communications links between vertices. Its state is divided into two categories:
legitimate state and illegitimate state. The distributed system should remain
in a legitimate state to work correctly. However, perturbations and faults can
bring it to an illegitimate state, and it is desirable that the system be auto-
matically brought back to a desirable legitimate state. This is called self sta-
bilization [5]. A system is said to be self-stabilizing if (1) it can converge to a
legitimate state starting form any illegitimate state without the intervention of
an external agent, and (2) when it is in a legitimate state, the system remains
henceforth. We note that the system must converge to a legitimate state in a
finite time.

In a self-stabilizing model, each vertex has only a partial view of the system,
called the local state. The vertex’s local state include the state of the vertex
itself and the state of its neighborhood. The union of the local states of all the
vertices gives the global state of the system. Based on its local state, a vertex
can decide to make a move. Then, self-stabilizing algorithms are given as a
set of rules of the form ”if p(i) then M , where p(i) is a predicate and M is
a move. p(i) is true when state of the vertex i is locally illegitimate. In this
case, the vertex i is called a privileged/active vertex. We assume that a vertex
executes the algorithm as long as it is active (at least one predicate is true).
Each vertex makes its decision independently, so more than one vertex may be
selected at the same time. Then, we assume the existence of a central daemon
[5], which arbitrarily selects only one of these active vertices to make a move.
If two or more vertices are privileged, we cannot predict which vertex will move
next. Our algorithm uses a composite read/write atomicity. Several distributed
protocols (transformers) [3, 2, 19] exist that provide such a scheduler, which
enable central daemon-based self-stabilizing algorithms to be executed in any
distributed system. Our algorithm can be easily combined with any of these
protocols to work under different schedulers as well.

Many self-stabilizing algorithms were proposed in graph theory such as self-
stabilizing algorithms for finding spanning tree, matchings and independent
set [1, 14, 20]. Graph coloring is also a very attractive field in which self-
stabilizing algorithms are studied. In 1993, Ghosh ana Karaata [10] proposed
a self-stabilizing algorithm to color planar graphs with six colors by transform-
ing it in a direct acyclic graph. Sur and Srimani [22] presented a vertex col-
oring algorithm for bipartite graphs. Shukla et al. [21] exhibit a randomized
self-stabilizing coloring of several classes of bipartite graphs and trees. In 2000,

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 21

Gradinariu and Tixeuil [12] showed algorithms to color the arbitrary networks.
Their algorithms use at most ∆+1 colors and stabilize in O(n∆). More recently,
Hedetniemi et al. [13] presented two self-stabilizing algorithms which use at most
∆ + 1 colors. The first algorithm they proposed gives a Grundy coloring of a
graph. In 2005, Huang et al. [15] give a self-stabilizing algorithm to color pla-
nar graphs with six colors, but in comparison to [10], they do not construct a
directed acyclic graph and decrease the quantity of memory required for the
algorithm.

Our paper is organized as follow: the next section introduces the distance-k
self-stabilizing algorithms and justifies the need of more than distance-1 informa-
tion to perform the b-coloring. In Section 3 we give a distance-2 self-stabilizing
algorithm for a b-coloring of graphs. We also give an execution example, as well
as correctness and convergence proofs of the algorithm. Then, in Section 4, we
highlight the use of a b-coloring self-stabilizing algorithm in the data mining
for data clustering. Finally, Section 5 outlines the main conclusions and future
works.

2 Distance-k Self-stabilizing Algorithms

In the usual self-stabilizing model, each vertex i can read only the variables of its
neighbors, that is, those vertices which are within distance 1 from i. Then, the
local state of a vertex is its sate and the state of its adjacent vertices. However,
as it was observed in [9] certain algorithmic problems can be solved more easily
and more efficiently on an extended model in which each vertex can instantly
see all state information of vertices that are within distance k > 1. In [9], the
authors gives a model where each vertex has information about vertices within
distance two. This model was extended in [11] and a general model is proposed
to transform any distance-k knowledge self-stabilizing algorithm to distance-1
self-stabilizing algorithm. Thus, they define a new class of self-stabilizing model
called distance-k self-stabilizing model. In the distance-k self-stabilizing model,
each vertex i can instantly see its distance-k ball, along with all state information
of these vertices. The proposed transformation model has a time and space
overhead equal to no log(k). As application, the authors give polynomial time
self-stabilizing algorithm for finding maximal irredundant sets, problem which
seems to require distance-4 information.

In the b-coloring problem, the distance-1 knowledge seems to be not suffi-
cient. Indeed, if we assume a distance-1 model in Figure 1, every vertex should
be Dominating for its color since the coloring is proper and a vertex can not see
if there is another dominating vertex for its color beyond its immediate neigh-
borhood. Then, the vertex v dominates the colors {1, 2, 3}, while the vertex u
dominates the color {4} only. This implies that the vertex u is not dominating.
It is clear that it should have at least distance-2 information to decide if it is
dominating or not. Therefore, a distance-k information with k ≥ 2 are required
to perform the b-coloring well.

22 L. Dekar and H. Kheddouci

1 2 3

4

1 1

v

u

Fig. 1. The distance-2 information requirements of the b-coloring

3 A Distance-2 Self-stabilizing Algorithm for a b-Coloring
of Graphs

In this section, we give a self-stabilizing algorithm for a b-coloring of graphs
that requires distance-two information at each vertex. Our algorithm provides
a b-coloring (not necessarily maximum) of any graph. Finding a b-coloring (not
necessarily maximum) of a graph can be solved in polynomial time. The number
of colors w(G) generated by our algorithm represents a lower bound of the b-
chromatic number of the graph G. Then, we have χ(G) ≤ w(G) ≤ ϕ(G) ≤
∆ + 1.

Our strategy is to construct a b-coloring locally and lead to a general b-
coloring of the graph G. To achieve this aim, we try to color the graph G such
that the maximum color cmax in the graph G appears on dominating vertices,
and every dominating vertex of color cmax is adjacent to a dominating vertex of
every color less than cmax. This enables to restrict the required information to
construct the b-coloring of G to the 2-neighborhood of every vertex. Since every
vertex has only information about its 2-neighborhood, then the color cmax is
relative to the 2-neighborhood of every vertex.

First, we start by giving some notations and definitions used in this section:
We note N(v) and Nc(v) respectively the set of vertices adjacent to the vertex v
and the set of colors that appear on them. We note N2(v) and N2

c (v) respectively
the set of vertices in the 2-neighborhood of v and the set of colors that appear on
them. We also note N2[v] and N2

c [v] respectively the set of vertices that includes
v and its 2-neighborhood, and the set of colors that appear on them.

A vertex u is considered as a maximum dominating vertex by a vertex v, with
u ∈ N2[v], if u is dominating and has the maximum color in N2

c [v]. Moreover,
we say that a vertex v makes an increasing move if c(v) increases. Otherwise,
we say that it makes a decreasing move.

In order to determine if a vertex v is dominating or not according to a set of
colors S, we define the function Dominating(v,S). The function return true if the
vertex is dominating, and false otherwise. A vertex v is dominating according to
a set of colors S if it is adjacent to all the colors in S except its own color, and
has the minimum color not appearing in its neighborhood.

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 23

bool Dominating(v,S)
Begin

If S \ {c(v)} ⊆ Nc(v) AND c(v) = min{c : c /∈ Nc(v)} Then return True.
Else return False.

End

3.1 The Rules of Our Algorithm

In this subsection, we give the different rules that compose our self-stabilizing
algorithm, and the conditions required to execute them. Our self-stabilizing al-
gorithm is composed of two rules.

Rule 1: The rule R1 enables to maintain a proper coloring. If two adjacent ver-
tices u and v have the same color, then v takes the minimum color not appearing
in its neighborhood.

R1:
BEGIN

If ∃u ∈ N(v) c(v) = c(u) THEN c(v) = min{c : c /∈ Nc(v)}
END

Rule 2: The rule R2 enables to delete not dominating colors from the graph
G, starting from the largest one. The rule is performed locally such that every
vertex decides if it is dominating according to the colors in its 2-neighborhood,
and if it should change its color accordingly. A vertex v changes its color by
executing the rule R2 if it is not dominating and there is an adjacent maxi-
mum dominating vertex u that has not a dominating vertex colored c(v) in its
neighborhood. Indeed, by this move, the vertex v aims to make u not maximum
dominating and obliges it to make a decreasing move. Then, we ensure that
at the end of our algorithm execution, all the maximum dominating vertices
colored cmax are adjacent to dominating vertices of all the other colors c, with
c < cmax.

Before giving the rule R2, we define three predicates that we use in this rule.
The predicate P1(v) is true if all the vertices in the two neighborhood of v are

properly colored.

P1(v) = ¬∃u ∈ N2[v] c(u) ∈ Nc(u)

The predicate P2(v) is true in two cases:

1. There exists at least one maximum dominating vertex u in the neighborhood
of v that is not adjacent to a dominating vertex colored c(v). This is shown
in Figure 2.

2. There is no maximum dominating vertices in the neighborhood of v.

24 L. Dekar and H. Kheddouci

5

4 3

2
1

3

2

1
2

1

3

4

v

u

Fig. 2. The maximum dominating vertex u is not adjacent to a dominating vertex
colored c(v) = 3

P2(v)=(∃u,u ∈ N(v) AND c(u)=max{c : c ∈ N2
c [v]} AND Dominating(u, N2

c [v])
AND ¬∃w ∈ N(u) c(w) = c(v) AND Dominating(w, N2

c [v]))
OR

(¬∃u,u ∈N(v) AND c(u)=max{c :c∈ N2
c [v]}ANDDominating(u, N2

c [v]))

The predicate P3(v) is true in the same conditions as the case 1 of the predicate
P2(v).

P3(v)=∃u,u ∈N(v)ANDc(u)=max{c :c∈N2
c [v]} AND Dominating(u, N2

c [v])
AND ¬∃w ∈ N(u) c(w) = c(v) AND Dominating(w, N2

c [v])

Let c1 be the minimum color not appearing in the immediate neighborhood
of a vertex v:

c1 = min{c′ : c′ /∈ Nc(v)}.

Let c2 be the minimum color c, such that for every maximum dominating
vertex u adjacent to v, there exists in its neighborhood a dominating vertex w
colored c.

c2=min{c :∀u,u ∈N(v)ANDc(u)=max{c′:c′∈N2
c [v]} AND Dominating(u,N2

c[v])
∃w ∈ N(u) c(w) = c AND Dominating(w, N2

c [v]) AND c(w) /∈ Nc(v)}.

Then, the ruleR2 is executedby a vertex v if the following conditions are verified:
• All the vertices in the 2-neighborhood of v are properly colored (P1(v) =

true).
• If c1 < c(v), and either there exists an adjacent maximum dominating vertex

u that has not a dominating vertex w colored c(v) in its neighborhood, or
there is simply no maximum dominating vertices in the neighborhood of v
(P2(v) = True).

• if c1 > c(v), v is not dominating and there exists a maximum dominating
vertex u, adjacent to v, that has not a dominating vertex w colored c(v) in
its neighborhood (P3(v) = True).

We note that if c1 < c(v) then we consider necessarily that the vertex v is not
dominating. If more than one vertex verify the conditions above, then the vertex
having the largest color executes the rule R2 first.

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 25

R2:
BEGIN

P4 = P1(v) AND [(c1 < c(v) AND P2(v)) OR (c1 > c(v) AND Dominating(v, N2
c [v]) =

False AND P3(v))].

If P4(v) AND c(v) = max{c(x) : x ∈ N2[v] and P4(x)} Then

If c1 < c(v) Then c(v) = c1

Else c(v) = c2

End

3.2 Execution Example

We give in Figure 3 an execution example of our distance-two self-stabilizing
algorithm for a b-coloring of graphs.

(a) First, the coloring of the graph is not a b-coloring. The selected vertex
has not a proper coloring, and then the predicate of the rule R1 is true. (b) The
selected vertex executes the rule R1 and takes a proper color 1. (c) A new active
vertex v is selected to execute the algorithm. The vertex has the largest color in
its 2-neighborhood and is not dominating. Then, there exists a color c1 < c(v)
and we have P2(v) = True. (d) The selected vertex v executes the rule R2 and
get the color 4. It also becomes maximum dominating. (e) A new active vertex
is selected. It is not dominating and is not adjacent to a maximum dominating
vertex. Then, the predicate P2(v) is true. (f) The selected vertex executes the
rule R2 and takes the minimum color not appearing in its neighborhood. (g) A
new active vertex v is selected. The selected vertex is adjacent to a maximum
dominating vertex u, which has not a dominating vertex colored c(v) in its
neighborhood. Then, the predicate P3(v) is true. Moreover, there exists a color
c2 > c(v) that appears on a dominating vertex in the neighborhood of u. (h) The
vertex v takes the color c2 = 3 by executing the rule R2. (i) A new active vertex
is selected that is not adjacent to a maximum dominating vertex and is not
dominating. Then, we have P2(v) is true. (j) The selected vertex executes the
rule R2 and takes the minimum color not appearing in its neighborhood. (k) The
obtained coloring is a b-coloring. The black vertices represent the dominating
vertices. The grey vertices are those not dominating, but having dominating
vertices with their color in the neighborhood of all their adjacent maximum
dominating vertices.

3.3 Convergence and Correctness of the Algorithm

In this section, we prove the correctness and the convergence of our self-
stabilizing algorithm.

Lemma 1. Each vertex can execute the rule R1 at most once.

26 L. Dekar and H. Kheddouci

(a)

2

4

1

2

5

2

3 4

2

3

1

(b)

2

4

1

2

5

2

3 4

1

3

1

(c)

2

4

1

2

5

2

3 4

1

3

1

(d)

2

4

1

2

4

2

3 4

1

3

1

(e)

4

2

4

1

2

2

3 4

1

3

1

(f)

4

2

4

1

2

2

3 2

1

3

1

(g)

2

4

2

4

1

2

2

3

1

3

1

(h)

2

4

3

4

1

2

2

3

1

3

1

(i)

2

4

3

4

1

2

2

3

1

3

1

(j)

2

4

3

2

1

2

2

3

1

3

1

(k)

1

2

4

3

2

2

2

3

1

3

1

Fig. 3. An execution example of the algorithm

Proof. After executing the rule R1, a vertex becomes properly colored. Since
no vertex can destroy the proper coloring of another vertex, then the rule R1 is
executed at most once.

Lemma 2. A vertex v can make at most 2 moves, when there exists a maximum
dominating vertex in its neighborhood that is not adjacent to a dominating vertex
with a color c(v).

Proof. If a vertex v has a maximum dominating vertex in its neighborhood that
is not adjacent to a dominating vertex with a color c(v), then v is active. Hence, in
a first step, if v has not the minimum color c1 not appearing in its neighborhood,
then the predicate P2(v) is true and then it executes the rule R2 to take this
color. Once colored with c1, the vertex v checks if there is a maximum dominating
vertex in its neighborhood that is not adjacent to a dominating vertex with a

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 27

color c. If yes, the predicate P3(v) is true and v executes R2 a second time to
take the color c2. The color c2 is the minimum color such that each maximum
dominating vertex in the neighborhood of v has an adjacent dominating vertex
colored c2. Such color always exists as proved in Lemma 7. Therefore, the vertex
v makes at most 2 moves.

Lemma 3. If a maximum dominating vertex of color cmax is not adjacent to a
dominating vertex of color c < cmax, then it will make a decreasing move and
becomes eventually not maximum dominating vertex.

Proof. When a maximum dominating vertex u colored cmax is not adjacent to
a dominating vertex of color c < cmax, then all the vertices adjacent to u and
colored with c execute the rule R2 and move to change their color. Hence, the
vertex u will not have the color c in its neighborhood, which means that it has
not the minimum color not appearing in its neighborhood and is not maximum
dominating too. In this case, the predicate P2(v) is true and the vertex u executes
the rule R2 and takes the color c .

Lemma 4. Let S be a set of the maximum dominating vertices adjacent to v
and colored cmax. A vertex v can make at most 2∆ moves, when there is no
dominating vertices colored c(v) in the neighborhoods of the S’s vertices

Proof. A vertex v can have at most ∆ maximum dominating vertices with
a color cmax in its neighborhood. Moreover, a vertex v can make at most 2
moves if a maximum dominating vertex in its neighborhood u is not adjacent
to a dominating vertex with a color c(v), according to Lemma 2. The moves
of v causes a move of u that becomes not maximum dominating as proved in
Lemma 3. Then, from these statements, we can deduce that a vertex can make
at most 2∆ moves when there is no dominating vertices with its color in the
neighborhoods of its adjacent maximum dominating vertices .

Lemma 5. A maximum dominating vertex or a vertex that is not adjacent to
a maximum dominating vertex can make only decreasing moves, and at most
∆(G).

Proof. If a vertex v is not adjacent to a maximum dominating vertex, then the
predicate P3(v) is false. This implies that the vertex v can only make a decreasing
move when executing R2.

Lemma 6. A vertex can make at most 2∆2 + 1 moves.

Proof. As proved in Lemma 4, a vertex v can make at most 2∆ moves when
there is no dominating vertices colored c(v) in the neighborhoods of its adjacent
maximum dominating vertices colored with cmax. In this case, all the maximum
dominating vertices with color cmax disappear, according to Lemma 3, whereas
the new maximum dominating vertices have at most the color cmax − 1. Then,
the vertices adjacent to these vertices can make another 2∆ moves. Hence, we
can deduce that the maximum color cmax can only decrease during the execution

28 L. Dekar and H. Kheddouci

of our algorithm, and for every value of cmax, 2 ≤ cmax ≤ ∆(G) + 1, the vertices
adjacent to the maximum dominating vertices make at most 2∆ moves. By
considering the execution of the rule R1, we deduce that a vertex can make at
most 2∆2 + 1 moves.

We note that a vertex v that is maximum dominating or not adjacent to
a maximum dominating vertex makes only decreasing moves until one of its
neighbors become maximum dominating. This happens when cmax decreases
and becomes equal to the color of this neighbor. Then, such vertex makes also
a number of moves that does not exceed 2∆2 + 1.

Lemma 7. Let v be a not dominating vertex colored with cmax − x and having
the minimum color not appearing in its neighborhood. Let S = {u1, u2, ..., uq} be
maximum dominating vertices adjacent to v. Then, when the vertex v executes
the rule R2, every maximum dominating vertex ui, 1 ≤ i ≤ q, is adjacent to
dominating vertices colored with every color c, for c = cmax − x + 1 to cmax − 1.

Proof. We give a proof by contradiction. We assume that there exists a max-
imum dominating vertex ui in S that is not adjacent to a dominating vertex
colored with c, with cmax − x + 1 ≤ c ≤ cmax − 1, when v executes the rule
R2. Since c(ui) > c > c(v), then according to Lemma 3, the vertex ui makes
a decreasing move and become not maximum dominating before the vertex v
executes the rule R2. Thus, the vertex ui will not belong to S when v executes
R2, which gives a contradiction.

Lemma 8. Our self-stabilizing algorithm gives a b-coloring of any graph G.

Proof. Let v be a not dominating vertex colored with cmax − x and u1, u2,...,
uq be the maximum dominating vertices adjacent to v and colored cmax. In our
proof, we distinguish four different cases:

In the first two cases, we assume the vertex v has not the minimum color not
appearing in its neighborhood.

• Case 1: All the vertices ui, 1 ≤ i ≤ q, are adjacent to a dominating vertex
of color c(v) = c−x. Then, the vertex v keeps its color and does not make a
move. We observe then that a dominating vertex colored c − x exists in the
graph.

• Case 2: There exists a vertex ui, 1 ≤ i ≤ q, not adjacent to a dominating
vertex of color c(v). In this case, the predicate P2(v) is true and the vertex
v takes the minimum color not appearing in its neighborhood. By Lemma
3, the dominating vertex ui makes a decreasing move and takes the color
c−x by executing R2. Then, two scenarios can happen: 1- All the maximum
dominating vertices of color cmax in G are not adjacent to a dominating
vertex of color c−x. Thus, they all make the same operation as ui and become
dominating for the color c−x. 2- There exists a maximum dominating vertex
of color cmax in G that is adjacent to a dominating vertex v′ of color c − x.
Thus, the color c − x has a dominating vertex in G that is v′.

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 29

In the two scenarios, we observe that we have always a dominating vertex
of the color c − x by decreasing the number of colors or by maintaining it.

In the following two cases, we suppose that the color of the vertex v is the
minimum not appearing in its neighborhood.

• Case 3: All the vertices ui, 1 ≤ i ≤ q, are adjacent to a dominating vertex
of color c(v). Then, the vertex v keeps its color as in Case 1.

• Case 4: There exists a vertex ui, 1 ≤ i ≤ q, not adjacent to a dominating
vertex of color c(v). In this case, the predicate P3(v) is true and the vertex
v executes R2 and takes a color c′ > c(v), such that every maximum domi-
nating vertex ui is adjacent to a dominating vertex colored c. We note that
the color c′ always exists according to Lemma 7. Hence, by Lemma 3, the
dominating vertex ui makes a decreasing move. The same two scenarios as
Case 2 can be identified with the same observations.

Now, according to these four cases, we can deduce that if a dominating vertex
with a color c − x, c − x < cmax, exists in the graph, then the number of colors
(expressed by cmax) is maintained. Otherwise, a dominating vertex colored with
c − x is obtained by decreasing the number of colors.

Therefore, we obtain necessarily a b-coloring of the graph, since at the end,
every color will have a dominating vertex.

Theorem 9. Our self-stabilizing algorithm gives a b-coloring of any graph G on
O(∆2).

Proof. This is a direct consequence of 6 and 8.

4 The Application of the b-Coloring Self-stabilizing
Algorithm in Distributed Data Mining

A clustering is a fundamental data mining process that aims to classify observa-
tion into categories, such that all the objects in the same category share a same
property. Clustering plays an important role in data mining applications such as
Web analysis, information retrieval and many other domains. The b-coloring of
graphs is a useful way to partition data set into several clusters. Our previous
works [8] introduced this approach and showed its efficiency. Among the most
interesting features of the b-coloring for the data clustering, we cite the identi-
fication of each cluster by one dominating object which guarantee the disparity
between clusters. A b-coloring self-stabilizing algorithm can be interesting to
cluster data objets in dynamic distributed systems (e.g. peer-to-peer networks),
where data objects join and leave the system continuously. Then, we can assume
that the data objects are distributed on several peers, and every data object is
considered autonomous. Then, the system can be modelled by a graph where
vertices are the data objects and the edges are the relation between them. Thus,
the data clustering is performed and maintained through the maintenance of a
b-coloring, by using a self-stabilizing algorithm.

30 L. Dekar and H. Kheddouci

5 Conclusion

In this paper, we propose a distance-two self-stabilizing algorithm for a b-coloring
of a connected undirected graph G. The algorithm converge on O(∆2). As future
works, we aims to use our algorithm for data clustering in distributed systems.

References

[1] Antonoiu, G., Srimani, P.K.: A self-stabilizing distributed algorithm for moinimal
spanning tree problem in a symmetric graph. Computer and Mathematics with
Application 35(10), 15–23 (1998)

[2] Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in
an arbitrary system graph tree that stabilizes using read/write atomicity. In:
Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D.
(eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 823–830. Springer, Heidelberg (1999)

[3] Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000.
LNCS, vol. 1914. Springer, Heidelberg (2000)

[4] Corteel, S., Valencia-Pabon, M., Vera, J.: On approximating the b-chromatic num-
ber. Discrete Applied Mathematics 146, 106–110 (2005)

[5] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control.
ACM 17(11), 643–644 (1974)

[6] Effantin, B., Kheddouci, H.: The b-chromatic number of some power graphs. Dis-
crete Mathematics and Theoretical Computer Science 6, 45–54 (2003)

[7] Effantin, B., Kheddouci, H.: A distributed algorithm for a b-coloring of a graph.
In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.)
ISPA 2006. LNCS, vol. 4330, pp. 430–438. Springer, Heidelberg (2006)

[8] Elghazel, H., Kheddouci, H., Deslandres, V., Dussauchoy, A.: A new graph-based
clustering approach: Application to pmsi data. In: IEEE International Conference
on Services Systems and Services Management (ICSSSM 2006), France (2006)

[9] Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.:
Distance-two information in self-stabilizing algorithms. Parallel. Process. Lett. 14,
387–398 (2004)

[10] Ghoch, S., Karaata, S.: A self-stabilizing algorithm for coloring planar graph.
Distributed Computing 71, 55–59 (1993)

[11] Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance-k knowledge
in self-stabilizing algorithms. Theoretical Computer Science 399, 118–127 (2008)

[12] Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In:
Proceedings of the International Conference on Principles of Distributed Systems
OPODIS 2000, pp. 55–70 (2000)

[13] Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing color-
ings. Information Processings Letters 87, 251–255 (2003)

[14] Hsi, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. In-
formation Processing Letters 43(2), 77–81 (1992)

[15] Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous
planar networks. Information Processing Letters 95, 307–312 (2005)

[16] Irving, R.W., Manlove, D.F.: The b-chromatique number of a graph. Discrete
Applied Mathematics 91, 127–141 (1999)

Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs 31

[17] Kouider, M., Maheo, M.: Some bounds for the b-chromatic number of a graph.
Discrete Mathematics 256(1-2), 267–277 (2002)

[18] Kratochvil, J., Tuza, Z., Voigt, M.: On the b-chromatic number of graphs. In:
Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 310–320. Springer, Heidelberg
(2002)

[19] Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. In:
Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 254–268. Springer, Heidelberg
(1999)

[20] Shi, Z., Goddard, W., Hedetniemi, S.T.: An anonymous self-stabilizing algorithm
for 1-maximal independent set in trees. Information Processing Letters 91, 77–83
(2004)

[21] Shukla, S., Rosenkrantz, D., Ravi, S.: Developement self-stabilizing coloring algo-
rithms via systematic randomization. In: Proceedings of the International Work-
shop on Parallel Processing, pp. 668–673 (1994)

[22] Sur, S., Srimiani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs.
Information Science 69, 217–219 (1993)

Duty Cycle Stabilization

in Semi-mobile Wireless Networks

Jing Li and Anish Arora

Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210

{ljing,anish}@cse.ohio-state.edu

Abstract. Coordinating the duty cycles of nodes in low power wireless
networks raises challenging stabilization issues. In this paper, we show
how to maintain duty-cycle coordination across the partitions of a static
network of nodes. The idea is to synchronize the wakeup times of the
nodes based on information carried by mobile “token” nodes between
the otherwise disconnected partitions; the stabilization challenge is to
deal with the corruption of state in both the static nodes and the mobile
tokens. Our basic protocol assumes zero or more token nodes traversing
disconnected static nodes in a circular order without overtaking each
other. Refinements of our protocol accommodate richer patterns of token
traversal and speeds.

1 Introduction

Energy-efficient operation is a basic requirement for battery powered wireless
sensor networking. Almost-always-off operation of sensor nodes is thus the norm
in any wireless sensor network application whose lifetime has to be nontrivial. In
synchronous architectures, almost-always-off operation is achieved via ultra-low
duty cycle processing. (By way of contrast, in asynchronous architectures, it is
achieved via wake-up-on-event based processing.) 1% to 0.1% duty cycling is
characteristic of the state-of-the-art in mote-scale wireless sensor networks.

Duty cycling entails two inter-related issues: one is the maintenance of co-
ordination between the nodes so that they are repeatedly simultaneously up in
order to communicate with each other when need be; and the other is choosing
the appropriate rate of cycling so that nodes are neither contending excessively
for the communication medium nor are they waking up excessively and perform-
ing wasteful idle listening. In some cases, coordination may be needed globally
across the network while in others it may be needed only with respect to node
neighborhoods. Analogously, the same duty cycle may be chosen at all nodes in
the network or, should the load across the nodes vary, different rates may be
chosen in each locality.

Stabilization of both the coordination and the rate selection aspects of duty
cycling is an unavoidable consideration, not only for initializing wireless sensor
networks, but also for dealing with faults, clock drift, configuration or environ-
ment change, traffic or application mode changes, etc. For the case of static,

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 32–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Duty Cycle Stabilization in Semi-mobile Wireless Networks 33

connected networks, the stabilization problem has received significant attention;
see for instance the work on stabilizing time synchronization in wireless sensor
networks [1]. In this paper, we focus on the less studied but no less important
case of mobile or partially mobile networks. We motivate the problem at hand
via a case study.

1.1 Duty Cycling for Elevator Sensing

PeopleNet is a wireless sensor network currently deployed in Dreese Labs, our
department building on the Ohio State campus. As the name suggests, PeopleNet
is about people-centric sensing; it comprises scenarios that involve sensing for
the people, by the people, and of the people.

A realized PeopleNet scenario involves communicating the location of all the
elevators in the building to a server, which in turn makes this information avail-
able in real-time via the web or, more usefully for the residents of the building,
via a multi-hop low-power wireless network involving mobile hand-held devices.

(a) (b)

Fig. 1. (a) A Dreese Labs Elevator (b) TelosB Mote Deployed in Elevator

As shown in Figure 1, each elevator car has a battery powered mote sensor
embedded in its false ceiling which sends a radio beacon every time the elevator
door opens at any floor. Beacons from an elevator mote are heard by a static
battery-powered “relay” mote which is mounted nearby the elevator egress at the
corresponding floor. In turn, the relay communicates the beacon information to
a wired infrastructure network that respectively forwards the beacons to a base
station server. The base station in turn makes the elevator location available to
the local cellphone network upon demand as well as to the web continuously, see
Figure 2.

Note that this scenario involves both mobile sensor nodes (on each elevator)
and static relay nodes (on each floor). Duty cycling involves having both mobile
and static nodes simultaneously up. When elevators do not move at all, i.e., at
night, the rate of duty cycling should decrease to suit energy-efficient operation;
conversely, when elevators use increases, the rate of duty cycling should increase.

34 J. Li and A. Arora

Fig. 2. PeopleNet Elevator Localization Webpage

In the particular case of our building, a static relay node cannot commu-
nicate directly with relay nodes on neighboring floors. The static relay nodes
thus comprise a network of singleton node partitions. Achieving stabilization
of almost-always-off operation within the wireless network itself –i.e., without
resorting to using the out-of-band wired infrastructure network— thus needs
the elevator to serve as a token carrying the coordination information between
the floor relays. When elevators do not move at all, for instance at night, the
network is disconnected and its partitions can gradually fall out of sync. When
the elevators resume functioning, stabilization is needed to regain the duty cycle
coordination across the relay and elevator motes.

1.2 Contributions

We abstract the problem of energy-efficient duty cycling as achieving stabilizing
wakeup coordination across a network of partitioned clusters of static nodes via
mobile token nodes that move between the clusters. To begin with, we further
abstract each cluster as a single static node and consider the special case where
the tokens traverse the static nodes in a unidirectional ring fashion without
overtaking each other.

For this “unidirectional ring” model, where the static nodes cannot communi-
cate with other static nodes but only via the mobile tokens, we design a stabiliz-
ing protocol by which all nodes converge to being simultaneously up according
to a pre-selected global duty cycle.

We also present refinements of the basic protocol whereby: (1) tokens may
not individually traverse the entire ring, but the set of all tokens cumulatively
traverse the ring; (2) the ring topology is generalized to an arbitrary graph
consisting of zero or more pre-specified unidirectional rings, each of which has
the group token traversal criterion; and (3) the duty cycle is adapted depending
upon the token traffic rates.

1.3 Organization of the Paper

Section 2 formulates the system model and the basic ring duty-cycling prob-
lem. Section 3 presents our stabilizing program for the basic ring, and its proof

Duty Cycle Stabilization in Semi-mobile Wireless Networks 35

of correctness. Section 4 discusses extensions of the program to accommodate
a richer token mobility model, underlying graph model, and traffic adaptiv-
ity. Section 5 discusses related work. Finally, concluding remarks are in
Section 6.

2 System Model and Problem Statement

The system consists of up to N static nodes and 0 or more mobile tokens. Each
static node and token has a unique integer identifier (Id); we assume that token
identifiers are smaller than node identifiers. Note that our use of tokens is in
contrast to the standard notion of tokens in the stabilization literature, in which
tokens refer to state at nodes (or state relationships between nodes); tokens here
refer to independent computing entities.

For convenience, we henceforth refer to a static node as simply a node. Nodes
are all isolated, in the sense that their communications cannot be heard by
other nodes. In contrast, tokens are never isolated: at each point in time, each
token can communicate with some one static node and, vice versa, that node can
always communicate with that token. Communications are half-duplex, so at a
given time a token can communicate with a node or vice versa, but both cannot
simultaneously. Note that multiple tokens may be in the vicinity of a given static
node at any time. It is thus possible that tokens may hear each others’ messages.

To begin with, we assume that tokens move such that they visit all nodes
according to a fixed unidirectional ring ordering of the nodes; we may thus re-
gard the nodes as being organized in a virtual ring. We assume that there is
a lower bound on the amount of time that a token may be in the vicinity of a
node; informally speaking, this lower bound will imply that each token is able
to exchange a synchronization message to and from with the node in question
even when synchronization between the node and the token is lost. There is
no upper bound on the time that a token visits with the node. So tokens may
stop moving or move arbitrarily slow. However, tokens cannot overtake other
tokens as they move around the ring. (We will generalize the mobility model in
Section 4.)

A “slot” is a unit of time in which a node may send or receive a message,
and/or perform some local computation. A “frame” is a contiguous sequence of
some large number, m, of slots. The time sequence at each node is divided into
a sequence of frames. The ratio of the number of slots in which a node is awake
in each frame to the number of slots in each frame is the duty cycle of the node.
We assume the network is synchronous at the level of “slots”. (The assumption
is readily removed, and is introduced only for ease of exposition.) If properly
initialized, nodes and tokens are synchronous even at the level of frames.

Fault Model. Tokens may leave or join the system spontaneously. Nodes may
leave or join the ring as well, subject to the upper bound of the node number not
exceeding N . The state of the tokens and the nodes may be arbitrarily corrupted.
Nodes and tokens may become desynchronized at the level of frames. As a result
of these faults, the starting state for the protocol may be thus arbitrary. Also, the

36 J. Li and A. Arora

clocks of individual nodes may exhibit skew during the operation of the system
and this should ideally be tolerated without much overhead.

Problem Statement. Required is a stabilizing protocol whereby the frames of each
token and node are synchronized so that visiting tokens and nodes can mutually
communicate at one or more well known moments during the frame.

3 Duty-Cycle Coordination in a Multi-token Ring

Coarsely speaking, the central idea of our protocol is to let a leader token dictate
the frame schedule to all nodes and tokens in the system. This is programmed
as follows: When the leader token visits a node, the node directly synchronizes
its frame schedule to be consistent with that of the leader. In turn, when a
non-leader token visits a node which has more recently synchronized with the
leader, the non-leader is indirectly resynchronized with the leader via the more
recent information at the node. And so on: When a non-leader token that has
been indirectly synchronized with the leader visits with a node which has less
recently synchronized with the leader, the node may indirectly resynchronize
itself with the leader. Thus, as long as tokens are moving around the ring, all
tokens and nodes become globally synchronized.

We refer to the information exchange between a token and a node to synchro-
nize the frame as a “synchronization-exchange”. In our protocol, synchronization-
exchange is programmed as follows. We let each node wake up in the first slot of
their frame. Each token sends its overall state in a message to the node which it is
visiting by waking up in the first slot of the frame. A node that receives a message
from the token sends its response in the next slot. Note that the token may not re-
ceive a response, however, if the frames of the token-node pair are not synchronized
or if a collision occurs with another token message during its original send.

Two basic issues now need to be addressed: (1) how to complete a
synchronization-exchange between a token and a node when their frames are
out of sync or when message collisions occur when multiple tokens are in the
vicinity of a node; and (2) how to stabilize the synchronization information
system-wide after faults happen.

The protocol deals with the first issue as follows. To regain communication
should frames be out of sync, each node randomly beacons during one or more
other slots in its frame. When a token does not receive its anticipated response,
it remains awake until it hears the node beacon. Upon receiving the node beacon,
the token can adjust the time for its next communication so as to ensure that
the node is then awake and, by using random backoffs over the set of possible
send times, to avoid collision with other visiting tokens. The next subsection
explains how the protocol deals with the second issue.

3.1 Synchronization-Exchange Protocol Design

The protocol consists of four main components: leader election, continuous frame
synchronization, false leader detection, and global reset, which are described next.

Duty Cycle Stabilization in Semi-mobile Wireless Networks 37

Leader Election. A leader token is elected so that its frame schedule serves as
a global reference to synchronize the frames of all nodes and tokens in the sys-
tem, which may initially be arbitrarily staggered. Stabilizing leader election is
achieved as follows. The up token with lowest Id is prioritized to win the election;
a variable l is maintained at each node and token to store the lowest Id known.

Continuous Frame Synchronization. Each node and token maintains a recency/
staleness time estimate of the number of frames since it last received synchro-
nization information about the leader frame schedule, either directly from the
leader token or indirectly from some other token/node.

This count is maintained using an integer variable c. The c value is assumed
to be (implicitly) incremented at the end of every frame in which no new syn-
chronization information is received. A special case is that the c value of a leader
token is always zero. When a node encounters a token with the same l, whichever
has the smaller c dominates their pairwise synchronization of the frame sched-
ule, since the smaller c represents a more recent and therefore more accurate
schedule. In other words, when a node and token agree on the leader Id, the one
with the larger c value will adjust its frame schedule to conform to that of the
one with the smaller c value.

Since non-leader tokens and nodes propagate frame synchronization informa-
tion, they may introduce errors because of their local clock skew. Tokens and
nodes therefore make adjustments to compensate for their skew. Figure 3 il-
lustrates the schedule adjustment and skew calculation. Node j measures the
relative difference between its clock time as well as c and the corresponding val-
ues at i, namely TErr and dc, respectively. Since i has a smaller c, j adjusts its
frame schedule. By way of compensation for skew, it calculates the TErr/dc to
be the average clock shift compared with the leader and incorporates TErr/dc

to its skew estimate.

False-Leader Detection. Tokens are responsible for detecting whether the cur-
rent leader is no longer up, i.e., has left the system. Each token maintains the
total number of nodes visited by the token that have its 〈l, c〉 value, in a variable
cc. Thus, if a token propagates its 〈l, c〉 to a node or the node already has the
same value, the token increments cc; likewise, if a node has smaller 〈l, c〉 value
than a token, the token copies the value of the node and resets its cc to 1.

Fig. 3. Illustration of Continuous Synchronization

38 J. Li and A. Arora

If the current leader is not up, the lowest 〈l, c〉 value in the system is prop-
agated to other nodes in the ring because none of them would have met the
corresponding leader more recently. One or more tokens would thus eventually
detect that their cc value has increased to N , where N is an upper bound on the
number of nodes in the ring, thereby detecting that the leader is false. Should
tokens and nodes become desynchronized before a false leader is detected, we let
nodes temporarily follow the tokens’ schedule.

Global Reset. Once a false leader is detected, the detecting node launches a
new round of leader election in the ring. This objective could be simply realized
using an integer sequence number, which is incremented to launch the new round.
Upon seeing the higher sequence number, other nodes would reset their status
and then participate in electing a new leader. Since the previous lowest Id has
left the ring, a new lowest Id will succeed in the competition.

We bound this sequence number in size by using instead a two-valued (green
and red) state variable s to reset the ring. “Green” represents a normal state.
In an ideal initial state, tokens and nodes would both be green. When a token
detects that leader l is not up, it updates s to red, which indicates that their
〈l, c〉 information is outdated. Note that when a token changes its s to red, it
must be the case that the entire ring has the same 〈l, c〉. Therefore, if a node
meets a red token, since both have the same 〈l, c〉, the node can follow the token
and change into red. Only when all nodes and tokens have changed to the red
state will a token reset itself into green, and thereby trigger other red nodes to
reset themselves. The 〈l, c〉 value after reset cannot equal a false leader’s 〈l, c〉,
therefore, when a red node or token encounters a different 〈l, c〉, the red node
has to reset itself. Thus, the entire ring will be reset to a green state again. A
new round of leader election is then started, having cleaned that false leader
from the system. The state transition is implemented by actions P2 and P3 in
next subsection and proof of convergence is presented in Lemma 4 in Appendix.

3.2 Synchronization-Exchange Protocol Variables

Each node and token maintains variables l, c, s; each token additionally main-
tainss variables p and cc. The associated semantics are summarized below:

– l is the lowest Id currently known to the token/node. Recall that token Ids
are lower than node Ids, hence l at any node need never be higher than its
node Id. Upon reset, l is set to the local Id.

– c is a count of the number of frames in which a node has not received
synchronization information from the leader token.

– s is the state of a token/node: 1 denotes the green state, and 0 the red state
where false leader has been detected. 1 is the ideal initial state for both nodes
and tokens.

– p is the Id of the last node that the token has finished a synchronization ex-
change with. Since a token may visit with a node indefinitely, p is used to dis-
tinguish whether or not the token has reached a new node. Its ideal initial value
is -1 which means that the token has not yet synchronized with any node.

Duty Cycle Stabilization in Semi-mobile Wireless Networks 39

– cc is, when s = 1, the count of nodes that a token has synchronized with
that have the same 〈l, c〉 value; when s = 0, cc is the count of nodes that a
token has synchronized with that have the same 〈l, c, s〉 value.

– token.i is true iff i is a token.
– Up.i is true iff the token i is currently up.

The statement reset i is defined to restore the initial value for token/node i:
reset i � l.i, c.i, s.i := i, 0, 1; (if token.i then p.i, cc.i := −1, 0)

3.3 Synchronization-Exchange Protocol Actions

In this subsection, we present the actions of our stabilizing program at token
(respectively, node) i by which i synchronizes with a node (respectively, token).

P1: token.i ∧ (〈l, c, s〉.i=〈l, c, s〉.j ∨ (〈l, c〉.i=〈l, c〉.j ∧ s.i>s.j)) ∧ l.i �= i ∧ p.i �=j ∧ cc.i<N
→ cc.i := cc.i + 1; p.i := j

[]
P2: (〈l, c〉.i=〈l, c〉.j ∧ s.j <s.i ∧ token.j) ∨ (〈l, c〉.j <〈l, c〉.i ∧ s.i=s.j =1)

→ 〈l, c, s〉.i := 〈l, c, s〉.j; if token.i then cc.i := 0
[]
P3: token.i ∧ cc.i=N

→ s.i := s.i +2 1; cc.i := 0; p.i := −1; if s.i=1 then reset i
[]
P4: l.i>i ∨ (l.i= i ∧ (c.i �=0 ∨ s.i �=1 ∨ cc.i �=0)) ∨ (〈l, c〉.i �=〈l, c〉.j ∧ s.i=0) ∨ cc.i>N

→ reset i

3.4 Synchronization-Exchange Protocol Correctness

As is standard in proofs of correctness of stabilizing programs, we: (i) identify an
invariant predicate, i.e., a predicate that is closed in the program and is such that
all the computations of the program starting from any state where the predicate
is true satisfy the specification of the program, and (ii) show convergence from
arbitrary states to the invariant, i.e., upon starting from an arbitrary state,
every computation of the program eventually reaches a state where the invariant
predicate holds.

Invariant. An invariant of our program, S, is a conjunction of the predicates S.1,
S.2, S.3, S.4 and S.5, defined below. Let T denote the set of tokens, Z denote
the set of nodes in the ring, T ∪Z = U . Also, let d(i, j) be the clockwise distance
between nodes i and j, i.e., the number of nodes between node i and node j (we
are assuming here that tokens move in a clockwise order.)

S.1 (∀i, j∈U :: l.i≤ i)
S.2 (∀i∈U :: l.i= i ⇒ (c.i=0 ∧ s.i=1 ∧ (token.i ⇒ cc.i=0)))
S.3 (∀i∈!T :: (s.i=1∧p.i�=−1)⇒(∃j∈Z ::〈l, c〉.j �=〈l, c〉.i ⇒ d(p.i, j)≤N−cc.i))
S.4 (∀i∈T :: (s.i = 1 ∧ cc.i = N) ⇒ (∀j ∈ U : 〈l, c〉.i = 〈l, c〉.j))
S.5 (∀i, j∈U :: s.i=s.j =0 ⇒ 〈l, c〉.i=〈l, c〉.j =min(〈l, c〉.k|k ∈ U))

The structure of the proof is as follows (details of individual sub-proofs are in
the Appendix).

40 J. Li and A. Arora

Lemma 1. S is closed in the synchronization-exchange protocol.

The following progress proofs assume that the token do not all stop moving.
Let H.1 = (S.1 ∧ S.2 ∧ S.3).

Lemma 2. true converges to H.1 in the synchronization-exchange protocol.

Lemma 3. H.1 converges to S in the synchronization-exchange protocol.

Theorem 1. The synchronization-exchange protocol is stabilizing with respect
to the predicate S.

Let R denote the stable states upon starting from any state where the invariant
S holds where the up token with least Id is known as the new leader to the entire
system. Let k = min(i|i ∈ T ∧ Up.i).
R = (∀i∈U :: l.i=k ∧ s.i=1 ∧ (token.i ⇒ cc.i<N))

Lemma 4. S converges to R in the synchronization-exchange protocol.

3.5 Synchronization-Exchange Protocol Analysis

First, we note that the synchronization time is equal to the leader election time.
When a leader is acknowledged by all tokens and nodes in the ring, global syn-
chronization is achieved, after which the synchronization is maintained by the
movement of the leader.

Leader election happens within a constant number of rounds of each token
circulating around the ring, in the model where no overtaking is allowed. From
the proof of Theorem 1, upon starting from an arbitrary state, every token has
the correct cc and p values within one round of circulating around the ring. If
there is no “maximum” false leader (as defined in the proof), the system con-
verges to R within the time taken by that lowest ID token to circulate around the
ring. Otherwise, the maximum false leader will first be detected by a non-leader
token within one round time. After the detectors second round of circulation, all
tokens and nodes change state to “red”. Thus, after each token traverses around
the ring and before at most 2 rounds each, global reset is completed, i.e., no false
leader exists any more. Finally, the system converges to R after the true leader
circulates the ring. Thus, the system converges to a state in R in 4 rounds of
circulation, where “round” is defined as the time for the lowest token to traverse
the ring.

4 Model Extensions and Protocol Refinements

In this section, we refine the basic protocol to accommodate three extensions to
the system model.

Token mobility patterns. While mobility in many operational settings is often
predictable, tokens may not traverse across all nodes (let alone in order and
without overtaking other tokens). In our elevator setting, for instance, elevator
tokens go back and forth across contiguous –but not necessarily all– nodes.

Duty Cycle Stabilization in Semi-mobile Wireless Networks 41

We therefore extend the model to assume that cumulatively some set of tokens
repeatedly traverse the ring in a given direction, even though individual tokens
may stop or reverse course.

To accommodate this mobility pattern, in which the elected leader token may
not itself visit each node in the ring, we refine the basic protocol so that in
addition to tokens carrying information about how many nodes have copied
their potentially false 〈l, c〉 value (via the variable cc), nodes also play the role
of relaying this information to other tokens that pass by. Specifically, we let
each node maintain the cc variable and update it during its synchronization-
exchanges. Subsequent tokens that visit the node may inherit and propagate
this value to other nodes. Thus tokens and nodes can continue to cooperate to
detect false leaders.

More general topologies. The virtual ring is readily generalized to any graph that
is the superposition of multiple rings, assuming that each ring has a set of tokens
that collectively traverse it repeatedly. Note that the token sets of abutting (and,
more generally, connected) rings may share tokens. Thus the individual token
traversal pattern may be arbitrary.

To accommodate this generalization, we refine the protocol so that each node
maintains independent state for each of the rings it participates in. Its frame
schedule is thus effectively the union of the frame schedules of the respective
rings; in other words, its duty cycle is the sum of the duty cycles for the respective
rings.

Global/local adaptivity of duty cycle to the rate of token arrival. For each ring, its
leader token may take on the responsibility for choosing the frame length m, and
accordingly globally changing the frame length when it visits (or other tokens
on its behalf visit) all nodes. To achieve global adaptivity, we refine the protocol
with memory of the previous and the new frame length at tokens/nodes.

A complementary approach is for each node to estimate/predict the local rate
of token arrival, and to correspondingly adapt the number of times it wakes up
in each frame to receive messages from tokens. This local approach relates to the
issue (1) discussion in Section 3 regarding collisions during local synchronization-
exchanges, and is useful when the arrival rate across the network is spatially
variable. In particular, when the number of tokens visiting a node changes, the
node should accordingly adapt the number of slots per frame that it wakes up
in (in other words, adapt its local duty cycle).

To achieve local adaptivity, we refine the protocol so that instead of being
up to receive a message from a token in the first slot of each frame, each
node broadcasts a beacon in the first slot of the frame. The beacon adver-
tises its wakeup schedule for the current frame. (The beacon may be randomly
reiterated during the frame to deal with frame resynchronization between visit-
ing tokens and the node.) Tokens can then choose which wakeup slots to con-
tend in, thereby decreasing the probability of collision. Conceivably, the beacon
may even indicate slot assignments for the tokens which the node knows are
visiting it.

42 J. Li and A. Arora

5 Related Work

Power management in wireless networks has been deeply studied in recent years,
particularly for the radio because radio communication is a dominant power
consumer among all components at sensor node. Power management is, broadly
speaking, coarse-grain or fine-grain. Coarse grain duty-cycling is exploited in
[2]. By way of contrast, fine grain duty-cycling focuses on scheduling sleep and
wakeup time for each node, and is the focus of this paper.

MAC. Duty cycling impacts the MAC layer, in that coordination between po-
tential communicators is necessary. MACs are, broadly speaking, synchronous
or asynchronous. A number of synchronous MACs have been proposed for static
networks, such as [9] and [10], but few have dealt with the stabilization issues
associated with loss of coordination or mobility. OMAC in [7] is an exemplar
which has: It is a receiver-centric MAC protocol which implements a locally
exclusive receiver wakeup schedule. The setting in this paper is different: there
is an asymmetry between tokens and nodes which does not exist in OMAC, as
a result of which only the tokens need to discover the node; thus, neither the
optimal unidirectional or bidirectional schedules of OMAC apply in this setting.
Asynchronous MAC approaches are considered more appropriate for mobile sen-
sor networks for the reason that the neighborhood may change periodically [11].
However, continuously sending out long preamble for each send is a very energy
inefficient way of avoiding neighborhood discovery.

Stabilizing coordination and mobility. The literature on stabilization has consid-
ered synchronization and mobility in a number of ways, of which we recall a
few. In [1], a stabilizing converge-to-max protocol is presented that deals with
clock skew of nodes and uses on bounded size variables, but does not explicitly
consider stabilization of duty-cycling. Earlier work of Herman achieved time syn-
chronization by disseminating the leader value across a stabilizing spanning tree.
[3] provides a constant time clock synchronization algorithm for synchronous and
partially synchronous systems for the special case of initial synchronization. Un-
der a virtual ring model similar to ours, [4] presents a self-stabilizing solution
to a mobile philosophers problem. [5] studies location management and routing
in mobile ad-hoc networks using external “leader” information to achieve stabi-
lization. [6] maintains a stabilizing structure rooted at a “leader” token whose
mobility is controlled for exfiltrating data efficiently.

Duty-cycle adaptivity. Adaptivity of duty-cycles in the presence of traffic changes
is important, since if the duty cycle is lower than required, collisions or sender
buffer overflow result; but, if the duty cycle is higher than required, energy is
wasted on idle listening. [8] discusses a local technique for stabilizing adaptation
of the duty cycle to optimize energy-efficiency.

6 Conclusions

In this paper, we addressed an abstract duty-cycling problem for low-power
wireless networks in terms of stabilizing maintenance of coordinated awake slots

Duty Cycle Stabilization in Semi-mobile Wireless Networks 43

across isolated static nodes. The result could be as substantial as increasing the
battery life of the network from a couple of weeks to several years.

Mobile tokens provided the information flow for achieving the desired coor-
dination in our solution. But since token mobility is largely independent of the
system, achieving stabilization involved a nontrivial consideration of a poten-
tially cyclic dependency between token information and node information. Our
solution works largely for networks comprising one or more rings; the problem
of stabilizing to a common duty cycle globally across an arbitrary graph that is
connected by mobile tokens deserves further attention.

We also presented global and local methods for adapting the duty cycle to
avoid collision and idle listening. Our solution of node discovery by keeping
tokens continuously awake until they hear node beacons exploited the asymmetry
between tokens and nodes in semi-mobile wireless networks, but is not necessarily
optimal, and would be another topic for further consideration.

References

1. Herman, T., Zhang, C.: Best Paper: Stabilizing Clock Synchronization for Wireless
Sensor Networks. In: SSS 2006, pp. 335–349 (2006)

2. Gouda, M.G., Choi, Y.-r., Arora, A.: Sentries and Sleepers in Sensor Networks. In:
OPODIS 2004, pp. 384–399 (2004)

3. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing 20(2), 115–
140 (2007)

4. Datta, A.K., Gradinariu, M., Raynal, M.: Stabilizing mobile philosophers. Inf. Pro-
cess. Lett. 95(1), 299–306 (2005)

5. Dolev, S., Lahiani, L., Lynch, N.A., Nolte, T.: Self-stabilizing Mobile Node Location
Management and Message Routing. Self-Stabilizing Systems, 96–112 (2005)

6. Demirbas, M., Soysal, O., Tosun, A.S.: Data Salmon: A Greedy Mobile Basestation
Protocol for Efficient Data Collection in Wireless Sensor Networks. In: DCOSS
2007, pp. 267–280 (2007)

7. Cao, H., Parker, K.W., Arora, A.: O-MAC: a receiver centric power management
protocol. In: ICNP 2006 (2006)

8. Cao, H., Arora, A., Parker, K.W., Lai, T.H.: Continuous Asynchronous Discovery
with Efficient Synchronous Communication for Mobile Networks. 12 pp. OSU-CSE
Technical Report OSU-CISRC-4/07–TR34 (2007)

9. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless
sensor networks. In: INFOCOM 2002 (2002)

10. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wire-
less sensor networks. In: SenSys 2003, pp. 171–180 (2003)

11. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys 2004 (2004)

Appendix

Closure of the Program

Lemma 1: S is closed in the synchronization-exchange protocol.

44 J. Li and A. Arora

Proof. Predicates S.1 and S.2 are closed under the program trivially. If S.3 holds
before P1 is executed and cc.i < N −1, the distance to possible lower 〈l, c〉 value
should be decreased by 1 since 〈l, c〉.i = 〈l, c〉.j; if cc.i = N − 1 before P1 is
executed, P2 and P4 are closed under S.3 trivially. After P3 is enabled, if s.i
changes to 0, S.3 holds obviously; if s.i changes to 1 by reset, p.i becomes -1,
thereby S.3 still holds. S.4 holds for P1, P2 and P3 because 〈l, c〉 doesn’t change
after execution. P4 holds for S.4 trivially. Similar to S.4, S.5 is closed under the
protocol.

Convergence of the Program

Lemma 2: true converges to H.1 in the synchronization-exchange protocol,
where H1 = (S.1 ∧ S.2 ∧ S.3).

Proof. By fairness, state predicates S.1 and S.2 would be satisfied by executing
action P4 continuously, which are purely local stabilization.

Variable p at token may have an arbitrary value in state true, however, we
argue that this value will become correct after the token moves forward and
communicates with the next node, because p will be updated to the Id of the
next node.

The cc value at each token could also be an arbitrary value between 0 and N.
Nevertheless, it only remains in finite illegal states because later on the token
would either change its 〈l, c〉 or s so that cc would be decreased to 0, also,
becomes a correct value from this moment. In particular, if a token’s 〈l, c〉 is
replaced by other node, cc is set to 0; otherwise, if it encounters larger or the
same 〈l, c〉 at a node, cc keeps increasing by 1 each time. Since previous cc is
arbitrary, it would reach N quickly. However, whenever it equals N, it will be set
to 0 according to P3, which is a correct value with respect to the new state s or
〈l, c〉.

S.3 is satisfied obviously if token resets. Otherwise, when the token’s value is
replaced by other lower 〈l, c〉, cc becomes 1 because it is the first node that has
the value met by the token. If a token copies its own value to a node or the node
already has the same 〈l, c〉, cc keeps increasing by 1. It indicates that a relatively
lowest value has been copied to number of cc nodes. Therefore, if there exists
a token who carries a lower leader information, it must stay somewhere outside
the sequence of nodes with same 〈l, c〉, which is equivalent to the predicate S.3.
Hence, S.3 would be satisfied when cc becomes correct.

Thus, token and node would eventually converge to state H1, where the first 3
predicates are satisfied and variables cc, p are correct with respect to 〈l, c〉 and s.

Lemma 3: H.1 converges to S in the synchronization-exchange protocol.

Proof. We define the state that false leader exists in the ring as SFL = (∃i ∈ U :
token.l.i ∧ ¬Up.l.i) and the set of false leaders is defined as FL = {l.i | i ∈ U :
token.l.i ∧ ¬Up.l.i}.

Duty Cycle Stabilization in Semi-mobile Wireless Networks 45

1. H1 ∧ ¬SFL converges to S.
Let l0 = min(l.i|i ∈ U). Since token l0 is up, the lowest value of 〈l, c〉 in the
system is 〈l0, 0〉. No matter what type of nodes token l0 meets, nodes will
copy the leader’s 〈l, c, s〉. There might be some tokens or nodes previously
in state 0, however, when l0 visits them, nodes must change to state 1 by
reset. Since true leader always provides fresher c values to visited nodes,
According to S.3, the clockwise distance between token and the true leader
cannot be decreased to 0, indicating that all nodes have copied the same
value. Therefore, no token in state 1 will increase its cc to N. S.4 is satisfied.
Since no token changes s from 1 to 0, hence, S.5 is satisfied.

2. H1 ∧ SFL converges to S.
We define the “maximum false leader” as the token who carries the false
leader information with the highest priority. In particular, 〈l0, c0, s = 1, cc =
0〉 is the maximum false leader, where 〈l0, c0〉 = min(〈l, c〉.i|i ∈ U), s = 1
and cc is the lowest value.

According to program actions, the maximum false leader will copy this
value to all nodes it has visited unless they are the same. After each action
performed, cc increases by 1. Thus, the maximum false leader is reduced by
increasing its cc. Eventually, it will reach N and according to S.3, there would
be no lower leader in the system, therefore, S.4 is satisfied when all nodes
have copied this value. Subsequently, the maximum false leader will change
its state to 0, and propagate state 0 to all nodes it has visited. During this
procedure, the maximum false leader decreases itself from 〈l0, c0, s = 0, cc =
0〉 by increasing cc again. Eventually, it will reach N again because all nodes
kept value 〈l0, c0, s = 1〉, therefore, they may only change to state 0 after
seeing the maximum false leader in state 0. Before the maximum false leader
resets (decreases) itself again, it has propagated state 0 to N nodes. Since
tokens do not overtake each other, at the moment that maximum false leader
encounters 2N nodes with same 〈l0, c0〉 (at the end of first round, change from
1 to 0; at the end of second round from 0 to 1), all other tokens must have
met at least N nodes with the same value. Therefore, all nodes and tokens
who remain in state 0 would have the same value where S.5 is satisfied.

Theorem 1: The synchronization-exchange protocol is stabilizing with respect
to the predicate S.

Proof. ture leads to H1, H1 leads to S, therefore true leads to S.

Lemma 4: S converges to R in the synchronization-exchange protocol.

Proof. We define R as a stable state where starting from a state at S eventually
an alive token with minimum Id is known as the new leader among the entire
system, while cleaning previous false leader information if there is any. R = (∀i :
k = min(i|i ∈ T ∧ Up.i) : l.i=k ∧ s.i=1 ∧ (token.i ⇒ cc.i<N))

1. S ∧ R is closed.
{S ∧R}P1{R}: Assume that cc.i equals N-1 and the guard of P1 is enabled.
We argue that this claim cannot be true under S ∧ R. Because when cc.i =

46 J. Li and A. Arora

N − 1 the same 〈l, c〉 has already been copied to N-1 nodes. According to
S.3, the clockwise distance between last visited node p.i and the live leader is
within one node. If 〈l, c〉 at this node is the same again, where P1 is enabled,
there cannot be a live leader k who has a lower c (0). Hence, 〈l, c〉 value at
the rest node should not be the same, and P1’s guard will not be satisfied.
Therefore, the claim above is false. If cc.i is less than N-1, R still holds after
execution. Obviously, R is held under P2, P3 and P4.

2. S leads to R.
There are two phases. In the first phase, neither token nor node is in state
0. Let l0 = min(l.i|i ∈ U). A variant function is provided as follows.

F1 = 〈
∑
i∈U

|l.i − l0|,
∑
i∈U

|s.i|,
∑
i∈T

|N − cc.i|〉

The first element decreases until all nodes have acknowledged leader l0. If l0
equals k, then R is reached when the first element of function F1 reduces to
0. Otherwise, the third element will decrease till the second element becomes
less than |U |, the second phase is reached where state 0 appears in the system.

In the second phase, all nodes in state 0 have the lowest 〈l, c〉 by S.5,
therefore, we provide the variant function which decreases till R is reached.
Let 〈l0, c0〉 indicate the lowest value in the system.

F2 = 〈|i | i ∈ U : l.i= l0|,
∑
i∈U

|s.i|,
∑
i∈U

|l.i − k|, |
∑
i∈T

|N − cc.i|〉

When false leader information 〈l0, c0, s = 0〉 is in propagation, the second
and last element keeps decreasing. Because when some token has detected
the false leader, it will decrease its s.i and also trigger nodes to decrease their
s.i. After all tokens and nodes turn to state 0, the first detector starts reset
so that the first element of F2 is reduced. When F becomes 〈0, |U |, 0, |T |〉,
which means that k is considered as the new leader in the system, state R
is reached again.

DISH: Distributed Self-Healing

(In Unattended Sensor Networks)

Di Ma and Gene Tsudik�

Computer Science Department
University of California, Irvine

{dma1,gts}@ics.uci.edu

Abstract. Unattended wireless sensor networks (UWSNs) operating in
hostile environments face the risk of compromise. Unable to off-load col-
lected data to a sink or some other trusted external entity, sensors must
protect themselves by attempting to mitigate potential compromise and
safeguarding their data. In this paper, we focus on techniques that al-
low unattended sensors to recover from intrusions by soliciting help from
peer sensors. We define a realistic adversarial model and show how cer-
tain simple defense methods can result in sensors re-gaining secrecy and
authenticity of collected data, despite adversary’s efforts to the contrary.
We present an extensive analysis and a set of simulation results that
support our observations and demonstrate the effectiveness of proposed
techniques.

1 Introduction

Sensors and sensor networks are deployed and utilized for various applications
in both civilian and military settings. One of the most attractive properties of
sensors is their alleged ease of deployment. Because of the low cost of individ-
ual sensors and commensurately meager resources, security in sensor networks
presents a number of formidable and unique challenges. A large body of research
has been accumulated in recent years, dealing with various aspects of sensor
network security, such as key management, data authentication/privacy, secure
aggregation, secure routing as well as attack detection and mitigation.

Recently, unattended sensors and unattended sensor networks (UWSN) have
become subject of attention in the security research community [1,2]. In the
unattended setting, a sensor is unable to communicate to a sink at will or in
real time. Instead, it collects data and waits for an explicit signal (or for some
pre-determined time) to upload accumulated data to a sink. In other words,
there is no real-time reporting of sensed data. The inability to off-load it in real
time exposes the potentially sensitive data accumulated on unattended sensors
to certain risks. This is quite different from prior sensor security research where
there is an assumption of an on-line sink collecting data in a more-or-less real-
time fashion.
� This research was supported in part by an award from the US Army Research Office

(ARO) under contract W911NF0410280.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 47–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 D. Ma and G. Tsudik

Unattended sensors deployed in a hostile environment represent an attractive
attack target. Without external connectivity, sensors can be compromised with
impunity and collected data can be altered, erased or substituted. Sensor com-
promise is a realistic threat since sensors are often mass-produced commodity
devices with no secure hardware or tamper-resistance components. Prior security
work typically assumed that some number of sensors can be compromised during
the entire operation of the network and the main goal is to detect such com-
promise. This is a reasonable goal, since given a constantly present sink, attacks
can be detected and isolated. The sink can then immediately take appropriate
actions to prevent compromise of more sensors.

In our case, in contrast, the adversary can compromise a number of sensors
within a particular interval. This interval can be much shorter than the time
between successive visits of the sink. Thus, given enough intervals, the adversary
can subvert the entire network as it moves between sets of compromised sensors,
gradually undermining security. Generally speaking, this type of adversary is
well-known in the cryptographic literature as the mobile adversary [3].1

Consequently, the main security challenge in the UWSN scenario is: How
can a disconnected sensor network protect itself from a mobile adversary? Here,
“protect”, means: “maintain secrecy of collected information”, i.e., can a sensor
keep the adversary from learning sensed data even though the adversary might
eventually break into that sensor and learn all of its secrets. We view this as
an important problem because there are many scenarios where sensors are used
to collect critical or high-value data. Once a sensor is compromised and the
adversary learns its secrets, collected data – even if encrypted – becomes exposed.
This holds regardless of where encrypted data is stored: on the sensor that
produced it or elsewhere. Some recent work [2] has analyzed and confirmed the
futility of hiding data by moving it around the network.

We now zoom in further onto the problem of data secrecy. Considering that
compromise of a given sensor has a certain duration, data collected by the said
sensor can be partitioned into three categories, based on the time of compro-
mise: (1) before compromise, (2) during compromise, and (3) after compromise.
Obviously, nothing can be done about secrecy of data that falls into category
(2) since the adversary is fully in control. The challenge thus becomes two-fold:

• Forward Secrecy: the term forward means that, category (1) data remains
secret as time goes forward.

• Backward Secrecy: the term backward means that, category (3) data re-
mains secret even though a compromise occurred before it was collected.

We are interested in the confidentiality of data collected when sensors are not
under direct control of the adversary. In the cryptographic literature, notions
of intrusion-resilience [6] and key insulation [7]2 refer to techniques of provid-
ing both forward and backward security to mitigate the effect of exposure of

1 The mobile adversary model is used to justify proactive cryptographic primitives,
such as signatures and decryption [4,5].

2 Both extend the notion of forward security [8].

DISH: Distributed Self-Healing 49

Table 1. Notation Summary

v number of rounds between successive sink visits
n number of sensor nodes in the network

r, r′ collection round (interval) indices, 0 < r, r′ ≤ T
si sensor i, 0 < i ≤ n
dr

i data collected by si at round r
Er

i encrypted version of dr
i

H() one-way, collision-resistant hash (e.g. SHA-2)
Enc(X, Y) randomized encryption of Y under key X
Dec(X, Y) decryption of Y under key X

Or set of compromised sensors at round r
Hr set of healthy sensors at round r
Sr set of sick sensors at round r
|U | number of elements in set U

decryption keys. However, these techniques are unsuitable for solving the prob-
lem at hand, as discussed in Section 3.2.

Data integrity is an equally important issue which is normally considered
in tandem with data secrecy. However, in this paper, we ignore data integrity.
This is because we distinguish between read-only and read-write adversaries.
The former is assumed to compromise sensors and leave no evidence behind: it
merely reads all memory and storage. In contrast, a read-write adversary can
delete or modify existing – and/or introduce its own fraudulent – data.3 We
consider a read-only adversary to be more realistic, especially since it aims
to remain stealthy. A stealthy adversary has an incentive (and the ability)
to visit the UWSN again and again, while a non-stealthy one might be un-
able to do so as corresponding measurements are taken once an attack is
detected.

Contributions: In this paper we propose DISH (Distributed Self-Healing), a
scheme where unattended sensors collectively attempt to recover from compro-
mise and maintain secrecy of collected data. DISH does not absolutely guaran-
tee data secrecy; instead, it offers probabilistic tunable degree of secrecy which
depends on variables such as: adversarial capability (number of nodes it can
compromise at a given time interval), amount of inter-node communication the
UWSNs can support, and number of data collection intervals between successive
sink visits. We believe that this work represents the first attempt to cope with
the powerful mobile adversary in UWSNs. Consequently, it might open up a new
line of research.

Organization: We state our assumptions about the network and the mobile ad-
versary in Section 2. We examine public key-based schemes and NON-cooperative
symmetric key based-schemes in Sections 3 and 4 respectively. (These schemes not

3 In the security literature, read-only is often referred to as a passive adversary. We do
not use the term “passive” as it does not fit an adversary who is assumed capable
of compromising sensors. Whereas, read-write is called an active adversary.

50 D. Ma and G. Tsudik

only serve as our security yard-stick but also represent the entire solution space for
the unattended WSN compromise problem described in this paper.) We present
the cooperative symmetric key-based DISH scheme in Sections 5. We analyze the
effectiveness of DISH in Section 6. We discuss drawbacks of DISH as well as pos-
sible ways to mitigate them in Section 7. We conclude the paper in Section 8. Due
to paper size restrictions, simulation results as well as overview of related work
are deferred to the extended version of this paper [9].

2 Assumptions

We now state our network assumptions and present our model of the adversary.
Table 1 summarizes the notation used in the rest of the paper. Note that the
terms round and interval are used interchangeably.

2.1 Sensor Network Assumptions

We envisage a homogeneous network consisting of peer sensors uniformly dis-
tributed over a certain region. The network operates as follows:

• Sensors are programmed to collect data periodically. 4 Each sensor obtains a
single fixed-size data unit in each collection interval. v denotes the maximum
number of collection intervals between successive sink visits.

• Sensors are unattended. Each sensor waits for either a signal or for some
pre-determined time to upload accumulated data to the sink.

• The network is connected at all times. Any two sensors can communicate
either directly or indirectly, via other sensors.

• Sensors are capable of conducting certain cryptographic computations, such
as one-way hashing, symmetric encryption and – optionally – public key
encryption (but not decryption). However sensors are not able to run IDS
on their own.

• Regardless of its type, encryption is always randomized [10]. Informally
speaking, randomized encryption means that, given two encryptions under
the same key, it is unfeasible to determine whether the corresponding plain-
texts are the same.

• There is enough storage on a sensor to contain O(v) sensed (encrypted) data
items between successive sink visits.

• Each time a sink visits the network, the security “state” of all sensors is
securely re-initialized. This includes all cryptographic keys as well as initial
seeds for PRNGs. All sensors maintain loosely synchronized clocks.

• There are no power constraints. Although we try to minimize both compu-
tation and communication costs, we assume that security has a much higher
priority than power conservation.

4 Event-driven sensing is also possible in the unattended setting; however, we do not
consider it for the time being.

DISH: Distributed Self-Healing 51

We make no assumptions about the richness of sensed data: the set of possible
sensor readings might be very large or very small. It clearly depends on the
specific sensor application. In some cases, sensed data can vary widely, e.g., for
complex chemical sensors. Whereas, a simple light sensor might only collect 1-bit
values (i.e., 0 or 1).

2.2 Adversarial Model

We now describe the anticipated adversary. We refer to it as ADV from here
on. Our adversary model resembles that in [2], albeit with somewhat different
operations and goals.

• Compromise power: ADV can compromise at most k < n sensors during any
single collection interval. When ADV compromises a node, and for as long as
it remains in control of that node, it reads all of memory/storage contents
and monitors all incoming and outgoing communication.

• Network knowledge: ADV knows the composition and topology of the net-
work. It is capable of compromising any node it chooses.

• Key-centric: ADV is only interested in learning the secrets (keys) of sensors
it compromises (since knowledge of keys allows it to decrypt data).

• No interference: ADV does not interfere with any communications of any
sensor and does not modify any data sensed by, or stored on sensors it
compromises. In other words, ADV is read-only, as discussed above.

• Stealthy operation: ADV’s movements are unpredictable and untraceable.
Specifically, it is infeasible to detect when and if the adversary ever compro-
mised (or intends to compromise) a particular sensor.

• Atomic movement: ADV moves monolithically, i.e., at the end of each interval
ADV selects at most k nodes to compromise in the next interval and migrates
to them in a single action.

• Strictly local eavesdropping: ADV is unable to monitor and record all com-
munication. It can only monitor incoming and outgoing traffic on currently
compromised nodes.

ADV’s main goal is to learn data collected by sensors. However, this does not
imply that ADV can not guess that data. Since there might be only a few possible
values a sensor could obtain, ADV might know well in advance the entire range
of all such possible values as discussed at the end of Section 3.1. Instead, ADV is
interested in knowing exactly which value is being sensed. In the extreme case,
this might correspond to a 1-bit flag.

3 Public Key-Based Schemes

Although, for usual performance reasons, we prefer a scheme based on symmetric
cryptography, for the sake of completeness we start with a simple public key-
based approach and examine its advantages and limitations.

52 D. Ma and G. Tsudik

3.1 A Simple Public Key Scheme

The main features of the simple public key-based scheme are as follows:

• The sink has a long-term public key, PKsink, known to all sensors.
• As soon as a sensor collects data dr

i at round r, si encrypts it to produce:
Er

i = Enc(PKsink, Rr
i , d

r
i , r, si, · · ·) where Rr

i refers to a one-time random
number included in each randomized encryption operation, as specified in
the OAEP+ quasi-standard [10].

• When the sink finally visits the UWSN and gathers encrypted data from all
sensors, it can easily decrypt it with its private key SKsink.

Note that a sensor has no secret (private) key of its own – it merely uses the
sink’s public key to encrypt data. Since ADV does not know the sink’s private
key (SKsink), the only way it can determine cleartext data is by guessing and
trying to encrypt it with the sink’s public key, PKsink. In other words, given
a ciphertext Er

i (which conceals data dr
i), ADV cycles through all possible data

values d′ and compares Enc(PKsink, d′) to Er
i . If they match, ADV learns that d′

is the encrypted value. However, as discussed in Section 2.1, we use randomized
encryption and each Er

i is computed as: Enc(PKsink, Rr
i , d

r
i , ...) where Rr

i is a
one-time random value produced by the sensor for each encryption operation.
Assuming that bit-length of Rr

i is sufficient (e.g., 160 or more), the guessing
attack becomes computationally infeasible.

There is, however, a crucial security distinction based on the source of ran-
dom number Rr

i used in randomized encryption. If random numbers are obtained
from a strong physical source of randomness, then we can trivially achieve both
forward and backward secrecy. To argue this claim informally, we observe that a
true random number generator (TRNG) generates statistically independent val-
ues. That is, given an arbitrarily long sequence of consecutive TRNG-generated
numbers, removing any one number from the sequence makes any guess of the
missing number equally likely. Let us suppose that ADV compromises a sensor
si at round r′ and releases it at round r′′ > r′. Encrypted data from any round
r < r′ remains secret, since it has the form: Enc(PKsink, Rr

i , d
r
i , ...) and all the

random numbers that ADV learns while in control of si are statistically inde-
pendent from Rr

i . Thus, we have forward secrecy. Similarly, any data encrypted
after round r′′ (after ADV releases si) also remains secret, because all random
numbers ADV learns while in control of si are statistically independent from
those generated later. Thus, we have backward secrecy.

On the other hand, if random numbers are obtained from a pseudo-random
number generator (PRNG), the resulting security is much lower. This is be-
cause a typical PRNG produces “random” numbers by starting with a (secret)
seed value and repeatedly applying a suitably strong one-way function H() as:
Rr+1

i = H(Rr
i). Therefore, again assuming that si is compromised at round r′

and released at r′′, data Er
i = Enc(PKsink, Rr

i , d
r
i , ...) for r < r′ remains secret

since computing Rr
i from Rr′

i is computationally infeasible (even if r′ = r + 1)
due to the one-way property of function H(). This implies that forward secrecy
is preserved. However, for r > r′′, encrypted data is easily decrypted by ADV

DISH: Distributed Self-Healing 53

since it is easy to compute Rr
i from Rr′′

i by repeatedly applying (r − r′′ times)
the function H(). Therefore, backward secrecy is lost.

3.2 Key-Insulated and Intrusion-Resilient Schemes

We now consider more complex – and seemingly relevant – cryptographic tech-
niques that provide both forward and backward secrecy. They include key-
insulated [7] and intrusion-resilient [11,12] encryption schemes. In both models,
time is divided into fixed intervals. The public key remains fixed throughout the
entire system lifetime, whereas, the private key is updated in each interval. When
it is time to update the private key, the user contacts the base, a separate secure
entity typically in the form of a remote trusted server or a local tamper-resistant
hardware, for help in updating its key. This way, without simultaneously com-
promising both the user and the base, ADV is unable to learn future keys (thus
backward security is achieved).

However, all such schemes are completely useless in our scenario since nodes
(sensors) do not possess any decryption keys. They only use the sink’s public
key to encrypt data. Therefore, a key-insulated or an intrusion-resilient scheme
can only help against sink’s private key compromise – a problem irrelevant in
our context.

3.3 Public Key Summary

To summarize our discussion thus far, simple public key encryption can help in
achieving both backward and forward secrecy (our “holy grail” in this paper) only
if each sensor is equipped with a physical source of randomness, i.e., a TRNG.
Simple public key encryption with PRNG-equipped sensors achieves forward
secrecy but fails with regard to backward secrecy. More exotic key-insulated and
intrusion-resilient schemes are geared for digital signatures and decryption. They
are unsuitable for the problem at hand.

4 A Simple Symmetric Key Scheme

We now construct a scheme based on symmetric cryptography and discuss its
benefits and shortcomings.

We assume that, after each sink visit, each si shares an initial and unique se-
cret key K1

i with the sink. (This is in line with our assumptions in Section 2.1.)
Then, at round r ≥ 1, as it collects data, si produces Er

i = Enc(Kr
i , dr

i , ...). If
the encryption key does not change as rounds go by, all encrypted data can be
trivially read by ADV. It only needs to compromise the sensor once, obtain its
key and decrypt any encrypted data, whether generated before or after the com-
promise period. Instead, we require that, at the end of each round, each sensor
evolve its key using a one-way hash function H(), thus achieving forward se-
crecy. Specifically, round r (for 1 < r ≤ T) key is computed as: Kr

i = H(Kr−1
i).

54 D. Ma and G. Tsudik

If ADV breaks in at round r, it learns Kr
i but can not obtain Kr−1

i (which was
used to encrypt dr−1

i) due to the one-way property of H().
Unfortunately, backward secrecy is lacking. This is because ADV who breaks

in at round r learns Kr
i . Then, by mimicking the key evolution process, it can

obtain any future key Kr′

i (r′ > r) as: Kr′

i = Hr′−r(Kr
i).5 Armed with Kr′

i ,
it can decrypt any data (that it might find later) encrypted with Kr′

i . Hence,
there is no backward secrecy. Worse still, after n

k rounds, ADV reaches a steady
state, whereby all data collected and encrypted by all sensors is easily readable.

Based on our discussion in Section 3.1, it might seem that, if all sensors had
TRNGs, both backward and forward secrecy are achievable. This intuition is
wrong due to the following paradox: if si uses each random number Rr

i as a one-
time symmetric encryption key to produce Er

i = Enc(Rr
i , d

r
i), there is no way

for the sink to later decrypt it. This is because Rr
i , as a true random number,

is unpredictable, unique to si and irreproducible by anyone, including the sink.
So, there is no other way for si to communicate Rr

i to the sink.

Summary: Having reviewed simple public key and symmetric approaches, we ob-
serve that – except for the public key scheme used in conjunction with all sensors
equipped with TRNGs – neither achieves the desired level of security: forward
and backward secrecy of encrypted data. We believe that the combination of
public key encryption and per-sensor TRNG is not realistic for many current
and emerging sensor networks. Public key encryption requires more computa-
tion and consumes higher storage and bandwidth than symmetric encryption.
Similarly, node-specific TRNGs are not always realistic, at least not on the scale
in envisaged UWSNs. Therefore, below we focus on symmetric key techniques
which do not assume any strong source of randomness on individual sensors.

5 DISH: Distributed Self-Healing

We now describe DISH: Distributed Self-Healing scheme providing probabilistic
key-insulated data secrecy. We first describe the general idea and then present
protocol details.

5.1 General Idea

Each sensor si shares an initial unique secret key K1
i with the sink, as in Section

2.1. At the start, none of these keys are known to ADV. As soon as the sink
collects data and leaves the network unattended, ADV starts compromising sets
of nodes, at most k per round. We observe that, at round 1, when ADV first
compromises k sensors in O1, there are still n − k sensors that have not been
compromised. We call such sensors healthy and the currently compromised sen-
sors – occupied. While ADV moves to the next compromised set O2 in round 2,
nodes in O1 remain sick. That is, O1 becomes S2. The term sick refers to the
ADV’s ability to compute their secret keys for round 2 (and later), even though
it no longer occupies them.
5 The notation Hp() means p repeated applications of H().

DISH: Distributed Self-Healing 55

OCCUPIED

HEALTHY

SICK

Compromise

R
e

le
a

s e

At least one
healthy sponsor

All sponsors
are sick or

compromised

Fig. 1. DISH sensor state transition diagram

Our main idea is very simple: we let healthy sensors cure sick sensors to
become healthy. A healthy sensor is the one that has either never been compro-
mised yet or regained its security through DISH. Specifically, sick sensors ask
for contributions from healthy sensors and the latter contribute secret values
to sick sensors. A healthy sensor generates each contribution share - a random
number - using its PRNG. This random number is secret to ADV since learning
it requires knowledge of the healthy sensor’s current PRNG state. A sick sensor
uses contribution shares from healthy sensors – along with its current key – as
input to a one-way function to generate its next round key. As long as there
is at least one contribution from a healthy sensor, ADV is unable to learn the
new key (unless it compromises the same sensor again in the future). Conse-
quently, a previously sick sensor becomes healthy after a key update. We call a
sensor a sponsor of another sensor if it furnishes the latter with a contribution
in the latter’s key update process. A sick sensor asks a set of t sponsors for their
contribution shares at the end of every round.

To better illustrate the process, refer to Figure 1 which shows the sensor state
transition diagram. Our approach can be characterized by the following axioms:

• Axiom 1: A healthy sensor remains healthy until ADV compromises it.
• Axiom 2: An occupied sensor can not become healthy. (For it to have a

chance of becoming healthy, ADV has to release it).
• Axiom 3: A sick sensor can become healthy in next round if and only if at

least one healthy sensor contributes input to the computation of its (sick
sensor’s) key for round r + 1.

5.2 DISH Details

Within each round, each sensor runs two separate processes: main and sponsor.
The main process is shown in Algorithm 1 and the sponsor process in Algorithm
2. As in Section 4, at every sink visit, each si is securely re-initialized with K1

i

– a unique secret generated by the sink (details of this process are out of scope
of the present work). All sensors are thus healthy at the initial stage.

56 D. Ma and G. Tsudik

The main process (loop at line 5) shows how si selects a set of t sponsors and
obtains a random contribution HELP [p] from each. All collected contributions,
in addition to the current key, are then used to derive the next key Kr+1

i . The
one-way property of H() ensures that it is infeasible for ADV to compute this key
as long as at least one input out of: {Kr

i , HELP [1], ..., HELP [t]} is unknown.
As shown in Algorithm 1 and 2, each sensor node uses its local PRNG for both
sponsor nodes selection and contribution share generation (as a sponsor). As
mentioned earlier, a PRNG is often realized as a one-way function (such as our
H()). This allows ADV to compromise si at round r, copy the PRNG state,

release si by round r + 1, and still be able to compute the set of sponsors that
si will ask for help and the set of contribution values that si will generate as
a sponsor in round r + 1. Thus, ADV knows the entire set of sponsors of each
sick sensor and also all the contribution values the sick sensor will generate
for each sponsoring request. Because the sink knows all initial secrets and can
compute all intermediate states of all sensors; therefore, it can also re-generate
all sensor keys by mimicking the main and sponsoring processes in each round.
That is, the proposed key update process does not affect the sink’s knowledge of
sensors’ round keys and ability to eventually decrypt data encrypted with these
keys.

Communication and Computation Overhead. In DISH, each sensor needs
to contact t sponsors for help and also serve as a sponsor for t other sensors in
every key update. This incurs a total of 2t messages traversing the UWSN in the
end of each round. Each node needs to conduct 2t+1 hash operations per round:
t for sponsor selection, t for contribution generation and 1 for key generation.

6 Analysis

In this section, we present some adversarial strategies, followed by analytical
results demonstrating how DISH fares against these strategies. We also developed
a UWSN simulator which we used to support our analysis. However due to
length restrictions, we refer to the extended version of this paper [9] for detailed
simulation results.

DISH: Distributed Self-Healing 57

6.1 ADV Migration Strategies

The goal of ADV is to minimize the set of healthy sensors - Hr (or maximize
Sr). To achieve this goal, its best strategy is to always choose k healthy sensors
to compromise in the next round. We distinguish between two varieties of ADV,
based on its Or selection strategy: Trivial Adversary (T.ADV for short) and
Smart Adversary (S.ADV for short).

T.ADV’s strategy is to select and compromise k sensors from Hr randomly.
T.ADV estimates current sensor states by maintaining a network state map which
records IDs of sensors compromised and also the compromise time. Each round,
T.ADV either chooses to compromise sensors that have not yet been compromised
- these are absolutely healthy sensors - or those have ever been compromised a
long time ago - there is higher probability that these sensors have regained their
security through DISH.

S.ADV’s strategy is to select k healthy sponsors of some sick sensors, such that the
latter remain sick in the next round. S.ADV learns PRNG states of currently sick
sensors; therefore, it can determine the entire set of sponsors for each sick sensor.

6.2 Analytical Results

We analyze the performance of DISH against T.ADV in terms of the number of
healthy nodes at any round. Recall that a sick node becomes healthy if at least
one of its healthy contributions is not intercepted by T.ADV. Let p(i) denote the
probability that i out of t sponsors for a given sensor are healthy and pp(i) – the
probability that at least one (out of i) replies is not routed through any occupied
nodes. The probability that a sick sensor with t sponsors becomes healthy after
the r-th round key update can be expressed as:

pr(t) =
t∑

i=1

p(i) ∗ pp(i) (1)

where p(i) = (|Hr|
i)∗(n−|Hr|−1

t−i)
(n−1

t) . Note that pp(i) is influenced by the routing al-

gorithm and UWSN topology. To make our analysis independent from these
parameters, we define p as the probability of any contribution from a sponsor
to a recipient being intercepted (eavesdropped on) by T.ADV. We then have:
pp(i) = 1−pi. Therefore, expected number of healthy sensors at round r+1 can
be expressed as:

|Hr+1| = |Hr| + |Sr| ∗ pr(t) − k (2)

From this we see that |Hr| depends on k, p and t. More specifically, |Hr| is
proportional to t, and, inversely proportional to k and p. We now plot Equation
2 varying these three parameters. In this and all other plots in this paper, we
fix UWSN size at n = 400.

Figure 2 illustrates the influence of k and p on the number of healthy nodes
with t fixed at 6. When T.ADV can intercept 20% of all traffic (e.g. p = 0.2

58 D. Ma and G. Tsudik

 0
 20

 40
 60

 80
 100

 120
 140

 0
 5

 10
 15

 20
 25

 30

 0

 50

 100

 150

 200

 250

 300

 350

 400

H
ea

lth
y

N
od

es

kRound

 0

 50

 100

 150

 200

 250

 300

 350

 400

(a) n = 400 t = 6 p = 0.2

 0
 20

 40
 60

 80
 100

 120
 140

 0
 5

 10
 15

 20
 25

 30

 0

 50

 100

 150

 200

 250

 300

 350

 400

H
ea

lth
y

N
od

es

kRound

 0

 50

 100

 150

 200

 250

 300

 350

 400

(b) n = 400 t = 6 p = 0.8

Fig. 2. T.ADV analysis

as shown in Figure 2(a)), for k ≤ 127, the number of healthy nodes decreases
in the first several rounds and then remains steady afterwards. That is, there
are enough healthy nodes for the UWSN to successfully defend against T.ADV.
However, when the compromise power of T.ADV increases above the threshold
value of k = 127, healthy nodes eventually dwindle to none, as T.ADV controls
all nodes’ secrets from that round onwards. If T.ADV can intercept 80% of traffic
(as shown in Figure 2(b)), the threshold k value decreases to 68.

Figure 3 shows the effect of t on the number of healthy nodes when T.ADV
compromises k = 80 nodes at each round. We identify two critical t values
and denote them as tr and to (to > tr), respectively. tr determines whether
the network can successfully defend against T.ADV. If t < tr, T.ADV eventu-
ally learns all secrets and wins. It is easy to see that a higher t brings better
security with more healthy nodes when the network reaches stable state. How-
ever, it also incurs higher communication overhead. We note that there is a
value to such that: when t < to, the number of healthy nodes (after the net-
work reaches stable state) increases quickly with the increase in t. If t > to,
increasing t brings little extra security. Since DISH is not designed to achieve
guaranteed (deterministic) security, to represents a balance between security
and performance. It also determines the communication overhead. As shown
in Figure 3(a), if T.ADV intercepts 20% of all traffic, tr = 1 and to = 4.

DISH: Distributed Self-Healing 59

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

H
ea

lth
y

N
od

es

Round

t = 1
t = 2
t = 4
t = 6
t = 8

t = 10
t = 12

(a) n = 400 k = 80 p = 0.2

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

H
ea

lth
y

N
od

es

Round

t = 2
t = 4
t = 6
t = 8

t = 10
t = 12
t = 14
t = 16
t = 18

(b) n = 400 k = 80 p = 0.8

Fig. 3. Analysis of the effect of t

Whereas, if T.ADV intercepts 80% of all traffic (Figure 3(b)), tr = 9 and
to = 14.

In contrast with T.ADV, S.ADV strategically selects k healthy sponsor nodes
from a subset of the sick sensor set Sr, such that sensors in this subset are unable
to re-gain security through the key update process, since their sponsors are now
controlled by S.ADV. To maximize its advantage, S.ADV must also maximize the
number of sick sensors. It turns out, that this problem is reducible to the well-
known Subset Cover Problem which is NP. Since we consider a polynomial-time
S.ADV, the size of the covered subset is determined by the specific Or selection
algorithm used by S.ADV. However, it is safe to say that there should be at
least k

t more sick sensors with S.ADV than with T.ADV, under the same set of
parameters. This hypothesis is validated by simulation results demonstrated in
the extended version of this paper [9].

7 Discussion

In this section, we discuss some limitations of the proposed technique and con-
sider ways to mitigate them.

60 D. Ma and G. Tsudik

7.1 Attack Model Limitations

In this paper, we considered a relatively simple single-minded adversary who
is only interested in learning secret keys of compromised sensors by reading all
storage and eavesdropping on all traffic traversing these sensors. The proposed
DISH scheme defends against such attacks, as discussed in Section 6.

However, it is not difficult to image other types of attacks that could be
mounted by a more sophisticated ADV. For example, ADV can remain stealthy
if it deletes existing measurements and replaces them with (the same number of)
fraudulent measurements. Fraudulent data may change overall sensing statistics
and affect sink’s actions. Therefore, data integrity might be as important as data
secrecy. We acknowledge that DISH cannot be applied directly to address data
integrity since more issues (such as storage and bandwidth overheads) incurred
by authentication need to be studied further.

Although it is in ADV’s interest to be subtle, subtlety is not always possible.
If ADV’s goal is denial-of-service, by introducing fraudulent data, erasing ex-
isting measurements or interfering with legitimate communication, ADV cannot
possibly avoid detection. In addition, nothing prevents ADV from physically de-
stroying or damaging sensors, especially, since the network is unattended most
of the time.

In summary, ADV can disrupt and attack the network in many other ways that
are unaddressed by DISH. However, at least initially, we focused on the basic
read-only type of adversarial behavior, since its successful mitigation will allow
us to address more advanced (and perhaps more realistic) adversarial models in
the future.

7.2 Communication and Sensor Model Limitations

We considered DISH in an idealized network model where no message is lost
and no sensor fails. In this model, the sink can mimic the entire key evolution
process for all sensors and re-generate all secret keys. However, message loss
and/or sensor failures complicate this process.

Unreliable Communication & Reliable Sensors: If communication is un-
reliable but no sensor failures occur, a sensor might receive < t contributions in
a given round. It then considers the rest to be lost and records the ID-s of sen-
sors whose it did not receive. This incurs additional storage and communication
overhead of O(pl ∗ t) per sensor per round, where pl is message loss rate.

Unreliable Communication & Sensors: If both communication and sensors
themselves are faulty, the sink cannot (later) mimic the correct key update pro-
cess and is thus unable to decrypt all sensor data. It seems that no symmetric
key-based approach (such as DISH) can fully address this problem, i.e., public
key techniques are needed. There are two basic approaches of using public key
cryptography in this context. In the first, each node encrypts its data with the
sink’s public key and uses Kr

i as input input to the randomized public key en-
cryption function. In the second approach, each node encrypts sensed data with

DISH: Distributed Self-Healing 61

Kr
i and then uses the sink’s public key to encrypt Kr

i . The security of the two
approaches is the same. However, the latter is preferable if the size of sensed
data exceeds the public key block size (e.g., 320 bits for Elliptic Curve ElGamal
or 1024 bits for RSA).

7.3 Drawbacks of Reactive Sponsoring

The proposed DISH scheme is reactive in nature: a sensor selects its sponsors
based on local pseudo-randomness and each sponsor generates a contribution to
the next-round key. Reactive sponsoring has two drawbacks: First, it allows ADV
to learn the sponsors of a sick sensor, thereby allowing more powerful S.ADV at-
tacks. Second, it incurs the overhead of two messages for each contribution. An
intuitive alternative is proactive sponsoring, whereby, in each round, every sensor
unilaterally selects t sensors to sponsor. This simple change precludes ADV from
learning the sponsor set of a sick sensor; thus, S.ADV attacks become ineffec-
tive. Also, without explicit sponsorship request messages, bandwidth overhead
is reduced by half. We are currently conducting a detailed analysis and compar-
ison of the two (proactive and reactive) approaches and hope to report on our
findings in the near future.

8 Conclusion

In this paper, we explored techniques for intrusion-resilient data secrecy in
UWSNs. We proposed DISH, a symmetric key-based self-healing scheme that
achieves both forward and (probabilistically) backward secrecy. DISH success-
fully mitigates the effect of sensor compromise. Our simulation results clearly
demonstrate the efficacy of DISH against a stealthy mobile adversary.

Acknowledgments

The authors are grateful to Claudio Soriente and Roberto Di Pietro for comments
and discussions pertaining to this paper.

References

1. Ma, D., Tsudik, G.: Forward-secure sequentical aggregate authentication. In: IEEE
Symposium on Security and Privacy 2007 (May 2007)

2. Pietro, R.D., et al.: Catch me (if you can): data survival in unattended sensor
networks. In: IEEE PERCOM 2008 (2008)

3. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: ACM PODC
1991, Montreal, Quebec, Canada, August 19-21 (1991)

4. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public
key and signature systems. In: ACM CCS 1997 (1997)

5. Frankel, Y., Gemmel, P., MacKenzie, P., Yung, M.: Proactive rsa. In: Kaliski Jr.,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg
(1997)

62 D. Ma and G. Tsudik

6. Itkis, G., Reyzin, L.: Sibir: signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg (2002)

7. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg
(2002)

8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

9. Ma, D., Tsudik, G.: DISH: Distributed Self-Healing (in Unattended Sensor Net-
works). Cryptology ePrint Archive, Report 2008/158 (2008)

10. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139. Springer, Heidelberg (2001)

11. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-resilient public-
key encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612. Springer, Hei-
delberg (2003)

12. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A generic construction
for intrusion-resilient public-key encryption. In: Okamoto, T. (ed.) CT-RSA 2004.
LNCS, vol. 2964. Springer, Heidelberg (2004)

Universe Detectors for Sybil Defense in
Ad Hoc Wireless Networks

Adnan Vora1, Mikhail Nesterenko1,�, Sébastien Tixeuil2,��,
and Sylvie Delaët3,��

1 Kent State University
{avora,mikhail}@cs.kent.edu

2 Université Pierre et Marie Curie - Paris 6
sebastien.tixeuil@lip6.fr

3 Université Paris Sud 11
sylvie.delaet@lri.fr

Abstract. The Sybil attack in unknown port networks such as wireless
is not considered tractable. A wireless node is not capable of indepen-
dently differentiating the universe of real nodes from the universe of ar-
bitrary non-existent fictitious nodes created by the attacker. Similar to
failure detectors, we propose to use universe detectors to help nodes de-
termine which universe is real. In this paper, we (i) define several variants
of the neighborhood discovery problem under Sybil attack (ii) propose
a set of matching universe detectors (iii) demonstrate the necessity of
additional topological constraints for the problems to be solvable: node
density and communication range; (iv) present SAND — an algorithm
that solves these problems with the help of appropriate universe detec-
tors, this solution demonstrates that the proposed universe detectors are
the weakest detectors possible for each problem.

1 Introduction

A Sybil attack, formulated by Douceur [1], is intriguing in its simplicity. How-
ever, such an attack can incur substantial damage to the computer system. In
a Sybil attack, the adversary is able to compromise the system by creating
an arbitrary number of identities that the system perceives as separate. If the
attack is successful, the adversary may either overwhelm the system resources,
thus channeling the attack into denial-of-service [2], or create more sophisticated
problems, e.g. routing infrastructure breakdown [3].

Ad hoc wireless networks, such as a sensor networks, are a potential Sybil
attack target. The ad hoc nature of such networks may result in scenarios where
each node starts its operation without the knowledge of even its immediate
neighborhood let alone the complete network topology. Yet, the broadcast na-
ture of the wireless communication prevents each node from recognizing whether

� This research is supported in part by NSF Career award CNS-0347485. Part of the
research was done while this author was visiting University of Paris-Sud 11.

�� This research is supported in part by the ANR grant SOGEA and by the INRIA
ARC FRACAS.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 63–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 A. Vora et al.

the messages that it receives are sent by the same or different senders. Thus, an
attacker may be free to either create an arbitrary number of fictitious identities
or impersonate already existing real nodes. The problem straddles the security
and fault tolerance domains as the attacker may be either a malicious intruder
or a node experiencing Byzantine fault. A fault is Byzantine [4] if the faulty
node disregards the program code and behaves arbitrarily. For convenience, in
this paper we assume that the attacker is a faulty node rather than intruder. We
view the Sybil attack as a convenient way to study elementary ability of a wire-
less node to ascertain who its neighbors are. As such, the capability to counter
the Sybil attack is a fundamental building block for constructing a dependable
wireless network.

Problem Motivation. A standard way of establishing trust between commu-
nicating parties is by employing cryptography. There is a number of publications
addressing the Sybil attack in this manner [5,6,7,8,9,10,11]. For example, if each
node has access to verified certificates and every sender digitally signs its mes-
sages, then the receiver can unambiguously determine the sender and discard
superfluous identities created by the faulty node by checking the digital signa-
ture of the message against the certificates. However, there are several reasons for
this approach to be inappropriate. A cryptography-based solution pre-supposes
a key-based infrastructure which requires its maintenance and update and thus
limits its applicability. Moreover, resource constrained devices, such as nodes in
sensor networks, may not be able to handle cryptographic operations altogether.

Another approach is intrusion detection based on reputation [12,13,14]. Due
to the broadcast nature of wireless communication, the messages from each node
are observed by its neighbors. A fault is detected if the node deviates from the
protocol. It is unclear how reputation-based schemes would fare if the messages
cannot be matched to the sender: the faulty node may impersonate other nodes
or create an arbitrary number of fictitious nodes and set up its own alternative
reputation verification network.

However, there are two unique features of wireless communication that make
defense against the Sybil attack feasible. The wireless communication is broad-
cast. Thus, the message transmission of a faulty node is received by all nodes
in its vicinity. In addition, the nodes can estimate the received signal strength
(RSS) of the message and make judgments of the location of the sender on its ba-
sis. Note that the latter is not straightforward as the faulty node can change its
transmission signal strength (TSS). In this paper we investigate the approaches
to Sybil defense using this property of wireless communication.

Related Literature. Newsome et al [15] as well as Shi and Perrig [16] survey
various defenses against the Sybil attack. They stress the promise of the type of
technique we consider. Demirbas and Song [17] consider using the RSS for Sybil
defense.

A line of inquiry that is related to Sybil defense is secure location identifica-
tion [18,19,20,21,22]. In this case, a set of trusted nodes attempt to verify the
location of a possibly malicious or faulty node. However, the establishment of
such trusted network is not addressed. Hence, this approach may not be useful
for Sybil defense.

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 65

Delaët et al [23], and Hwang et al [24] consider the problem where the faulty
node operates synchronously with the other nodes. Delaët et al [23] provides
examples of positioning of faulty nodes and their strategies that lead to neigh-
borhood discovery compromise. Note that the synchrony assumption places a
bound on the number of distinct identities that the faulty node can assume be-
fore the correct nodes begin to counter its activities. Even though the faulty
node may potentially create an infinite number of fictitious identities, the cor-
rect nodes only have to deal with a finite number of them at a time. However,
this approach simplifies the problem as it limits the power of the faulty node
and the strength of the attack.

Nesterenko and Tixeuil [25] describe how, despite Byzantine faults, every node
can determine the complete topology of the network once each node recognizes
its immediate neighbors. Thus, to defend against the Sybil attack it is sufficient
to locally solve Byzantine-robust neighborhood discovery.

Note that the problem is trivial when the ports are known. In this case, the
receiver may not know the identity of the transmitter of the message but can
match the same transmitter across messages. This prohibits the faulty node from
creating more than a single fictitious identity or impersonating other real nodes
and allows a simple solution.

Our Approach and Contribution. We consider the problem of neighbor
identification in the presence of Byzantine nodes. The nodes are embedded in
a geometric plane and know their location. They do not have access to crypto-
graphic operations. The nodes can exchange arbitrary messages, but the only
information about the message that the receiver can reliably obtain is its RSS.
We consider the asynchronous model of execution. That is, the execution speed
of any pair of nodes in the network can differ arbitrarily. This enables the faulty
node to create an arbitrary number of fictitious identities or impersonate the
correct nodes in an arbitrary way. Moreover, in this model, the only unique
identities that the nodes have are their coordinates. Hence, the objective of each
node is to collect the coordinates of its neighbors. We focus on local solutions to
the neighborhood discovery. That is, each node only processes messages from the
correct neighbors within a certain fixed distance. We do not consider a denial-
of-service attack or jamming attack [2], where the faulty nodes just overwhelm
resources of the system by continuously transmitting arbitrary messages. We as-
sume that the network has sufficient bandwidth for message exchanges and the
nodes have sufficient memory and computing resources to process them. In our
model selection we intentionally abstracted from the complexity of radio signal
propagation. For example, we do not consider hidden terminal effect, unreliable
message delivery, intricate message propagation patterns [26]. Instead, we focus
on two specific aspects of wireless sensor networks that give rise to Sybil at-
tacks: asynchrony and the inability of the receiver to determine the sender of
the message.

In Section 2 we provide details for our execution model and formally state
several variants of the neighborhood discovery problem. Sections 3, 4, 5, and
6 outline the boundaries of the achievable. In Section 3, we formally prove
that this problem is not solvable without outside help. Intuitively, the faulty
node may create a universe of an arbitrary number of fictitious identities whose

66 A. Vora et al.

messages are internally consistent and the correct node has no way of differ-
entiating those from the universe of correct nodes. In Section 4, we introduce
universe detectors as a way to help nodes select the correct universe. The idea
is patterned after failure detectors [27]. Just like failure detectors, universe de-
tectors are not implementable in asynchronous systems. However, they provide
a convenient abstraction that separates the concerns of algorithm design and
implementation of the necessary synchrony and other details that enable the
solution to Sybil defense. However, unlike failure detectors, universe detectors
alone are insufficient to allow a solution to the neighborhood discovery problem.
If the density of the network is too sparse, the faulty nodes may introduce a
fictitious identity such that the detector is rendered unable to help the correct
nodes. In Section 5, we prove the necessary condition for the location of the cor-
rect nodes to enable a solution to the neighborhood discovery problem. However,
the faulty node may still be able to compromise the operation of correct nodes.
For that, a faulty node may assume the identity of a correct node and discredit
it by sending incorrect messages to other nodes. In Section 6 we prove another
necessary condition for the minimum transmission range of correct nodes that
eliminates this problem.

In Section 7 we present a Sybil-attack resilient neighborhood discovery algo-
rithm SAND that uses the universe detectors to solve the neighborhood dis-
covery problem provided that the necessary conditions are met. In their study
of failure detectors Chandra et al [28] defined the weakest failure detector as
the necessary detector to solve the specified problem. With the introduction of
SAND, we show that the employed detectors are the weakest detectors nec-
essary to solve the neighborhood discovery problem. In Section 8, we conclude
the paper by discussing the implementation details of the algorithm and the
attendant universe detectors.

2 Computation Model Description, Assumptions,
Notation and Definitions

A computer network consists of nodes embedded in a geometric plane. Each node
is aware of its own coordinates. A (node) layout is a particular set of nodes and
their locations on the plane. Unless explicitly restricted, we assume that the node
layout can be arbitrary. Any specific point in the plane can be occupied by at
most one node. Thus, the node’s coordinates in the plane uniquely identify it. The
nodes have no other identifiers. For ease of exposition, we use identifiers at the
end of the alphabet such as u or v to refer to the particular locations or non-faulty
nodes occupying them. We use f and k respectively to refer to a faulty node and a
location where the faulty node may pretend to be located. The distance between
u and v is |uv|. The neighborhood set or just neighborhood of a node u is a set of
nodes whose distance to u is less than a certain fixed distance dn.

Program Model. We assume the asynchronous model of algorithm execution.
That is, the difference between the execution speed of any pair of nodes can be
arbitrarily large. Note that this asynchrony assumption allows any node, includ-
ing a faulty one, to send an arbitrary number of messages before other nodes are

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 67

able to respond. The nodes run a distributed algorithm. The algorithm consists
of variables and actions. A (global) state of the algorithm is an assignment of
values to all its variables. An action is enabled in a state if it can be executed at
this state. A computation is a maximal fair sequence of algorithm states starting
from a certain prescribed initial state s0 such that for each state si, the next
state si+1 is obtained by atomically executing an action that is enabled in si.
Maximality of a computation means that the computation is either infinite or
terminates where none of the actions are enabled. In other words, a computa-
tion cannot be a proper prefix of another computation. Fairness means that if
an action is enabled in all but finitely many states of an infinite computation
then this action is executed infinitely often. That is, we assume weak fairness of
action execution. During a single computation, the node layout is fixed.

Nodes can be either correct or faulty (Byzantine). A faulty node does not
have to follow the steps of the algorithm and can behave arbitrarily throughout
the computation.

Node Communication. Nodes communicate by broadcasting messages. As
the distance to the sender increases, the signal fades. We assume the free space
model [29] of signal propagation. The antennas are omnidirectional. The received
signal strength (RSS) changes as follows:

R = cT/r2 (1)

where R is the RSS, c is a constant, T is the transmitted (or sent) signal strength
(TSS), and r is the distance from the sender to the receiver. We assume that
r cannot be arbitrarily small. Thus, R is always finite. There is a minimum
signal strength Rmin at which the message can still be received. There is no
message loss. That is, if a message is sent with TSS — T ′, then every node within
distance r′ =

√
cT ′/Rmin of the sender receives the message. We assume that

every correct node always broadcasts with a certain fixed strength Tr. A range
rt is defined as

√
cTr/Rmin. The relation between range rt and neighborhood

distance dn is, in general, arbitrary. A faulty node may select arbitrary TSS.
That is, a faulty node is capable of broadcasting with unlimited signal strength.
If a node receives a message (i.e. if the RSS is greater than Rmin), then the node
can accurately measure the RSS.

To simplify the exposition we assume that the nodes transmit three types
of messages: (i) u transmits announce, this message has only the information
about u and carries u’s coordinates; the purpose of an announcement is for u to
advertise its presence to its neighbors; (ii) u transmits confirm of another node
v’s transmission; (iii) u transmits conflict with another node v’s transmission if
its observations do not match the location or the contents of v’s message. The
original message is attached in confirm and conflict. Every message contains the
coordinates of the sender.

Fictitious Nodes and Conflicts. Since the only way to unambiguously differ-
entiate the nodes is by their location, the objective of every node is to determine
the coordinates of its neighbors. Faulty nodes may try to disrupt this process
by making the correct node assume that it has a non-existent neighbor. Such
a non-existent neighbor is fictitious. A node that indeed exists in the layout is

68 A. Vora et al.

real. Note that a real node can still be either correct or faulty. Faulty nodes may
try to tune their TSS and otherwise transmit messages such that it appears to
the correct nodes that the message comes from a fictitious node. Moreover, the
faulty nodes may try to make their transmissions appear to have come from
correct nodes.

As a node receives messages, due to the actions of a faulty node, the collected
information may be contradictory. A conflict consists of a message of any type
purportedly coming from node k, yet the received signal strength at node u does
not match |uk| provided that the signal were broadcast from k with the TSS of
Tr. A conflict is explicit if u receives this conflicting message. Note that the RSS
may be so low that u is unable to receive the message altogether, even though
the RSS at u should be greater than Rmin in case the message indeed come
from k and is broadcast at Tr. In this case the conflict is implicit. To discover
the implicit conflict u has to consult other nodes that received the conflicting
message. If u detects a conflict it sends a conflict message.

A universe is a subset of neighbors that do not conflict. That is, a universe
at node u contains nodes v and w whose announcements u received such that u
did not receive a conflict from v about w or from w about v. Note that due to
conflicts the information collected by a single node may result in several different
universes. A universe is real if all nodes in it are real. A universe is complete for
a node u if it contains all of u’s correct neighbors. Note that even though a faulty
node is real, it can evade being added to universes by not sending any messages.
Hence, a complete universe is not required to contain all the real nodes, just
correct ones. To put another way, two complete universes may differ only in
faulty nodes.

Program Locality. To preserve the locality of a solution to the neighborhood
discovery problem, we introduce the following requirement. Each node ignores
information from the nodes outside the range rt and about the nodes outside
the neighborhood distance dn. Observe that this prevents a node from obtain-
ing information about faulty neighborhood nodes from the nodes outside the
neighborhood via multiple-hop transmissions.

Problem Statement. We define several variants of the problem. The strong
neighborhood discovery problem SNDP requires each correct node u to output
its neighborhood set according to the following properties:

safety — if the neighborhood set of u is output, the set contains only all correct
nodes and no fictitious nodes of u’s neighborhood;

liveness — every computation has a suffix in whose every state u outputs a
neighborhood set that contains all correct neighbors of u. In other words, u
eventually outputs its complete neighborhood set.

This problem definition may be too strict. Some correct nodes may be slow
in announcing their presence. However, the safety property of SNDP requires
each node to wait for its slow neighbors before outputting the neighborhood set.
Hence, we define the weak neighborhood discovery problem WNDP . This prob-
lem relaxes the safety property to allow the output neighborhood set to contain
a subset of correct neighbors of u. Note that the presence of the fictitious nodes

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 69

in the output is still prohibited. Also note that the liveness property requires
that the neighborhood set of u in WNDP eventually contains all correct neigh-
bors. Further relaxation of the safety property yields the eventual neighborhood
discovery problem �NDP . It requires that the safety of SNDP be satisfied only
in the suffix of a computation. That is �NDP allows the correct nodes to output
incorrect information arbitrarily long before providing correct output. Observe
that any solution to SNDP is also a solution to WNDP , and any solution to
WNDP is also a solution to �NDP .

3 Impossibility of Standalone Solution to Neighborhood
Discovery

In this section we demonstrate that in the asynchronous system any correct
node is incapable of discovering its neighborhood if a faulty node is present.
The intuition for this result is as follows. Since a faulty node is not restricted
in the number of messages that it generates, it can send an arbitrary number
of announcements introducing fictitious nodes. The faulty node can then im-
itate arbitrary message traffic between these non-existent nodes. On its own,
a correct node is not able to differentiate these fictitious nodes from the real
ones.

Theorem 1. In an asynchronous system, none of the three variants of the
neighborhood discovery problem are deterministically solvable in the presence of
a single Byzantine fault.

Proof: We provide the proof for the eventual neighborhood discovery problem.
Since this problem is the weakest of the three that we defined, the impossibility
of its solution implies similar impossibility for the other two.

Assume the opposite. Let A be a deterministic algorithm that solves �NDP
in the presence of a faulty node. Let us consider an arbitrary layout L1 that
contains a faulty node f . Let us consider another layout L2 containing f such
that the neighborhood U1 in layout L1 of at least one correct node u differs from
its neighborhood U2 in L2 and this difference includes at least one correct node.
Without loss of generality we can assume that there exists a correct node v such
that v ∈ U1 and v �∈ U2.

We construct two computations of A: σ1 on layout L1 and σ2 on layout L2.
The construction proceeds by iteratively enlarging the prefixes of the two com-
putations. In each iteration, we consider the last state of the prefix of σ1 con-
structed so far and find the action that was enabled for the longest number of
consequent steps. If there are several such actions, we choose one arbitrarily. We
attach the execution of this action to the prefix of σ1. If this action is a message
transmission of a node w such that w ∈ U1, we also attach the following action
execution to the prefix of σ2: node f sends exactly the same message as w in
σ1 with the TSS selected as T = Tr|uf |2/|uw|2. Observe that u receives the
same message and with the same RSS in this step of σ2 as in the step added to
σ1. If the new action attached to σ1 prefix is not by a node in U1, or it is not
a message transmission, no action is attached to the prefix of σ1. We perform
similar operations to the prefix of σ2.

70 A. Vora et al.

We continue this iterative process until maximal computations σ1 and σ2
are obtained. Observe that by construction, both computations are weakly fair
computations of A. Moreover, in both cases u receives exactly the same messages
with exactly the same RSS.

By assumption, A is a solution to �NDP . According to the liveness property
of the problem, σ1 has a suffix where u outputs its neighborhood in every state
and, due to the liveness property, σ1 contains a suffix where u’s neighborhood set
contains all correct nodes. In layout L1 of σ1, v is u’s correct neighbor. Hence,
v has to be included in this set. That is, there is a suffix of σ1 where u outputs
a neighborhood set that contains v. However, u receives the same messages in
σ2. Since A is deterministic, u has to output exactly the same set in σ2 as
well. That is, σ2 contains a suffix where the neighborhood set also contains v.
However, v is fictitious in layout L2 of σ2. According to the safety property of
�NDP , every computation should contain a suffix where the neighborhood set
of u excludes fictitious nodes. That is, σ2 of A violates the safety of �NDP .
Hence, our assumption that A is a solution to the weak neighborhood discovery
problem is incorrect. The theorem follows. �

4 Abstract Universe Detectors

Definitions. The negative result of Theorem 1 hinges on the ability of a faulty
node to introduce an arbitrary number of fictitious nodes. A correct node cannot
distinguish them from its real neighbors. Still, a correct node may be able to
detect conflicts between nodes and separate them into universes. However, it
needs help deciding which universe is real. This leads us to introduce the concept
of a universe detector that enables the solution to the neighborhood discovery
problem in the asynchronous computation model. A universe detector indicates
to each correct node which universe is real. It takes the universes collected by
the node as input and outputs which universe contains only real nodes. That
is, a universe detector points to the real universe. Note that the algorithm still
has to collect the neighborhood information and separate them into universes
such that at least one of them is real. If the algorithm does not provide a real
universe, the detector does not help.

Depending on the quality of the output, we define the following detector
classes. For each node u, a strongly perfect universe detector SPU has the fol-
lowing properties:

completeness — if a computation contains a suffix where in every state, u
outputs a real and complete universe, then this computation also contains a
suffix where SPU at u points to it;

accuracy — if SPU points to a universe, this universe is real and complete.

The strongly perfect universe detector may be too restrictive or too difficult
to implement. Unlike SPU , a weakly perfect universe detector WPU may point
to a real universe even if it is not complete. That is, the definition of accuracy
is relaxed to allow the detector to point to a real universe that is not complete.
Note that WPU still satisfies the completeness property and has to eventually
point to the real universe if it is available. A further relaxation of completeness

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 71

and accuracy yields an eventually perfect universe detector �PU which satisfies
both properties in a suffix of every computation. Observe that the relationship
between these detector classes is as follows: SPU ⊂ WPU ⊂ �PU.

Observe that these universe detectors enable a trivial solution to the neigh-
borhood discovery problems: each node composes a universe for every possible
combination of the nodes that claim to be in its neighborhood. Naturally, as
the node receives announcements from all its correct neighbors, one of these
universes is bound to be real and complete. Hence, the detector can point to
it. However, such an approach essentially shifts the burden of separating ficti-
tious and real nodes to the detector while we are interested in minimizing the
detector’s involvement. This leads us to introduce an additional property of the
algorithms that we consider. An algorithm that solves the neighborhood discov-
ery problem that uses detectors is conflict-aware if for each universe U of node
u, if nodes v and w do not have a conflict and v belongs to U then w also be-
longs to U . That is, the algorithm does not gratuitously separate non-conflicting
neighbors into different universes. In what follows we focus on conflict-aware
solutions.

5 Necessary Node Density

Theorem 1 demonstrates that to solve the neighborhood discovery problem, any
algorithm requires outside help from a construct like a universe detector. How-
ever, the availability of a universe detector may not be sufficient. Faulty nodes
may take advantage of a layout to announce a fictitious node without generating
conflicts. Then, a correct node running a conflict-aware algorithm never removes
this fictitious node from the real universe. A universe detector then cannot point
to such a universe.

5.1 Snare

A faulty node may affect the correct nodes around it. A set Ef of correct nodes is
retinue of a faulty node f if the following holds: if a correct node u belongs to Ef ,
then every correct node v such that |vf | ≤ |uf |, also belongs to Ef . The faulty
node is the leader of the retinue. For example, assume there are two faulty nodes
f1 and f2 and three correct nodes u, v and w such that |f1u| < |f1v| < |f1w| and
|f2w| < |f2v| < |f2u|. The companion technical report [30] contains extensive
illustrations of this concept. All three correct nodes can be either in the retinue
Ef1 of f1 or Ef2 of f2. However, if v belongs of Ef1, so does u, and if u belongs
to Ef2, so do v and w.

A deception field for a retinue of a faulty node f is the area such that for
each point k of the field there exists a TSS that the leader of the retinue can
use to transmit a message. The message so transmitted generates the RSS at
each member of the retinue as if the message was sent from k with transmission
strength Tr. Intuitively, a deception field is the area where f can place fictitious
nodes without generating conflicts at its retinue members.

A point k in a neighborhood of a correct node u is a (simple) snare for u if
there exists a set of faulty nodes and a retinue assignment for them such that: u
is in one of the retinues and the intersection of the deception fields of the retinues

72 A. Vora et al.

includes k. Note that the nodes in range of k are either in the retinues or not.
Intuitively, a snare is a point where faulty nodes can jointly place a fictitious
node without generating explicit conflicts at any of the correct neighbors of u.
Note that some of the nodes may have implicit conflicts with k. That is, they
are within range rt of k and u but not in one of the retinues. That is, they
should receive a message from a node at k but they do not. Note that a snare
transmission from faulty nodes may still generate conflicts outside the range of
u. However, due to the locality assumption, u ignores this conflict.

A point k is a perfect snare for u if it is a snare and all nodes within the
transmission range of u and k are in the retinues of the faulty nodes participating
in the snare. That is, if faulty nodes broadcast in a perfect snare, neither explicit
nor implicit conflicts are generated at the neighbors of u.

5.2 Necessary Node Density Condition

Having described the required instruments, we now demonstrate that the avail-
ability of the universe detectors alone is not sufficient to enable a solution to any
of the neighborhood discovery problems if the node layout is too sparse (i.e. if
the nodes are not properly positioned in the plane).

To simplify the proof we consider solutions that are well-formed. An algorithm
is well-formed if (i) the action that transmits announcement is always enabled
until executed; (ii) the receipt of a message may enable either confirm or conflict,
this action stays enabled until executed.

Theorem 2. There is no conflict-aware well-formed deterministic solution to
any of the neighborhood discovery problems despite the availability of the universe
detectors if one of the considered layouts contains a perfect snare.

Proof: In the proof, we focus again on the weakest of the problems: the even-
tual neighborhood discovery. Assume the opposite: there is a conflict-aware well-
formed algorithm A that uses a detector and solves the problem even though in
one of the layouts L1, the neighborhood of a correct node u contains a perfect
snare k.

Consider a layout L2 that is identical to L1 except that there is a correct
node at location k in L2. We construct a computation σ2 of A on L2 as follows.
Faulty nodes do not send any messages in σ2. We arrange the neighbors of
u, including u itself, into an arbitrary sequence Q. We then build the prefix
of σ2 by iterating over this sequence. Since A is well-formed, each node in the
sequence has announcement enabled. We add the action execution that transmits
announcement to σ2 in the order of nodes in Q. Since A is well-formed, these
transmissions may enable confirm actions at the neighbors of u. Note that since
v is correct, conflict actions are not enabled by these transmissions. We now
iterate over the nodes in Q. For each node v we add the execution of these
confirm actions at v to σ2 in arbitrary fixed order, for example in the order
that the original senders the appear in Q. We proceed in this manner until
the sequence Q is exhausted. Note that these transmissions may potentially
generate another round of confirm messages at the nodes in Q. We continue
iterating over Q until no more messages are generated. We then complete σ2

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 73

by executing the actions of nodes in an arbitrary fair manner. Note that the
remaining messages deal with the nodes outside u’s neighborhood. Therefore, u
ignores them.

Now, the liveness property of all the detectors states that a detector points to
a universe if it is output for a suffix of the computation. Since A is a solution of
�NDP and σ2 is a computation of A, σ2 has to contain a suffix where u outputs
a real universe in every state. Since k is a correct neighbor of u, k is included in
the real universe.

Recall that in layout L1, point k is a perfect snare. This means that there is
an arrangement of retinues and the TSS for the faulty nodes, such that when
the faulty nodes transmit, each node in the neighborhood of u in the distance d
from k receives a message with the same RSS as if a node at k broadcast with
Td. Moreover, none of the nodes in the neighborhood of u detect conflicts.

We construct a computation σ1 of A on layout L1 as follows. We iterate over
the same sequence Q as in σ2. Note that k is also present in the sequence even
though it is fictitious in σ1. To build the prefix of σ1 we execute similar actions as
for σ2. The only difference is that when node k broadcasts in σ2, in σ1 we have
the faulty nodes that constitute the snare broadcast at the appropriate TSS.
Note that in the computation thus formed, the correct neighbors of u receive
messages at the same RSS and with the same content from the faulty nodes as
in σ2 from k. Thus, these transmissions do not generate conflicts. Observe that
this means that node u receives the same messages with the same RSS, and in
the same sequence in σ1 and σ2. Since A is deterministic, u has to output the
same universes in σ1 and σ2. Note also, that this means that u does not record
conflicts. Since A is conflict aware, all u’s universes of A include k together with
the correct neighbors.

However, k is a fictitious node in L1. This means that σ1 contains a suffix
where u does not output a real universe. According to the safety property of the
detectors, none of them provides output in a suffix of σ1. Which means that A
does not output a neighborhood set in a suffix of σ1. This violates the liveness
property of a solution to �NDP . Therefore, our assumption that A is a solution
to �NDP is incorrect. The theorem follows. �

6 Necessary Transmission Range

In this section we provide another required condition for the existence of a so-
lution to the neighborhood discovery problem. Essentially, if the nodes in the
same neighborhood are out of range, the faulty node may introduce a conflict
between them. This forces the algorithm to mistakenly split the correct nodes
into separate universes and renders the failure detector powerless.

Theorem 3. There is no conflict-aware deterministic solution for any of the
neighborhood discovery problems despite the availability of universe detectors
and lack of snares if the node transmission range rt is less than double the
neighborhood distance dn.

Proof: Consider the eventual neighborhood discovery and assume that there
is an algorithm A that solves the problem in the presence of detectors on any

74 A. Vora et al.

layout without snares yet the transmission range of the correct nodes rt is less
than 2dn. Consider the layout L1 where the neighborhood of a correct node u
contains two nodes v and f1 as well as a point k with the following properties.
As usual, v is correct, f1 is faulty and there is no node at point k. Even though
point k is in the neighborhood of u, it is out of range of v. That is, rt < |vk|.
Recall that this is possible since, by assumption, rt < 2dn. Node f1 is such that
|uf1| = |uk| and rt > |vf1|. The rest of the correct nodes in range of u are located
such that, with the exception of v, k forms a perfect snare for u. That is, if f1
sends a message from a fictitious node k, the only node that generates conflict
is v. Certainly, with the presence of v, k is not a snare so the assumptions of the
theorem apply.

Consider that f1 indeed sends announcement pretending to be a fictitious
node at k. Nodes f1 and k are equidistant from u. Thus, if f1 does not want u
to detect a conflict, f1 has to send the signal with the TSS of Tr. However, with
such TSS, v is in range of f1 but out of range of k. This means that v receives
the announcement ostensibly coming from k and detects a conflict. The RSS at
v is cTr/|vf1|2. Since A is a solution to the neighborhood discovery problem and
v is the only node that is aware of the conflict, v has to send conflict to u which
removes the fictitious node k from the real universe of u.

Consider a different layout L2 which is similar to L1, only point k is occupied
by a correct node and there is a faulty node f2 near v. Specifically, the distance
|vf2| is such that there are no correct nodes within the following range of f2:

|vf2|
|vf1|

√
c

Rmin

This ensures that when f2 is going to imitate node k, none of the nodes besides
v receive the messages from f2. Note that f2 and k still do not form a snare
because v is aware of the conflict. Note also, that such location of f2 can always
be found if the faulty node can be placed arbitrarily close to v.

Assume that if the node k in L2 sends a message, f2 replicates this message
with TSS

Tr|vf2|2
|vf1|2

Observe that in this case all nodes, including v and u, receive exactly the same
messages as in layout L1. Since A is deterministic, the nodes have to act exactly
as in the previous case. That is, v has to issue a conflict with the message of node
k. However, after receiving this conflict, k is separated from u’s real universe.
Recall that k is correct in layout L2. Note that in this case k is never going to
be added to the output of A at u. However, this violates the liveness property
of the neighborhood discovery problem since k is a correct neighbor of u. Thus,
A is not a solution to this problem as we initially assumed. �

7 The Sybil Attack Resilient Neighborhood Discovery
Algorithm SAND

Our description of the algorithm proceeds as follows. We first motivate the need
to frugally encode the universes to be passed to the universes detectors. We then

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 75

describe the operation of the neighborhood detection algorithm itself. Then,
we define the concrete implementations of the abstract detectors specified in
Section 4. These concrete detectors should operate with our algorithm. On the
basis of the algorithm and detector description we state the theorem of algorithm
correctness and detector optimality.

Encoding universes. Observe that a näıve solution for representing universes
by the algorithm results in an exponential number of universes. Indeed, assume
that node u compiled a set of nodes U that do not conflict with two nodes v
and w. Suppose now that u records a conflict between the two nodes. They thus
have to be placed in separate universes: U ∪ {v} and U ∪ {w}. Let us consider
another pair of conflicting nodes x and y that are different from v and w. Then,
there are four possible universes: U ∪ {vx}, U ∪ {vy}, U ∪ {wx}, and U ∪ {wy}.
Hence, if there are N nodes in the neighborhood of u, the potential number of
conflicting pairs is �N/2� and the number of universes is 2�N/2�.

Therefore, our algorithm encodes the universes in the conflicts that are passed
to the detector. That is, the algorithm passes a set of conflicts for the detector to
generate the appropriate universe on its own. Recall also that in an asynchronous
radio network the receiving node can not distinguish one sender from another
or decide if the two messages were sent by the same node. This task has to be
handled by the detector.

Algorithm Description. We assume that the necessary conditions for the
existence of a solution to the neighborhood discovery problem are satisfied: the
layout does not contain a (simple) snare and transmission range is at least twice
as large as the neighborhood distance dn.

The SAND algorithm operates as follows. Every message transmitted by the
node contains its coordinates. Each node sends announce. After receiving an
announce, a node replies with a confirm message. Each confirm contains the in-
formation of the announcement. If a node receives a message whose coordinates
do not match the received signal strength, the node replies with a conflict mes-
sage. The conflict also contains the information of the message that generated
the conflict. Observe that confirm can only be generated by announce while
conflict can be generated by an arbitrary message. Note that according to the
locality assumption every node ignores messages from the nodes outside of its
neighborhood distance dn.

Each node u builds a message dependency directed graph DEP. For each
confirm, u finds a matching announce; for each conflict — a matching message
that caused the conflict. Note that this message dependence may not be unique.
For example a faulty node may send a message identical to a message sent by
a correct node. Since a node cannot differentiate senders in asynchronous radio
networks, identical messages are merged in DEP. Note also, that a match may
not be found because the faulty node may send a spurious conflict message or the
conflict message is in reply to the faulty node message that u does not receive.
Node u removes the unmatched message. Also, u removes the cycles and sinks of
DEP that are not announce. Observe that DEP may grow indefinitely as faulty
nodes can continue to send arbitrary messages.

76 A. Vora et al.

Due to no-snare and transmission range assumptions, for every correct process
u the following is guaranteed about DEP :

– Eventually, u receives an announcement from every correct node in its neigh-
borhood. An announcement from each correct node will be confirmed by
every correct node. There will be no messages from the correct nodes that
conflict with any other messages from the correct nodes.

– Eventually, every message from a fictitious node will be followed up by at
least one conflict message sent by one of the correct nodes from the neigh-
borhood of u.

Concrete Universe Detectors. We define the concrete detectors cSPU ,
cWPU and �cPU as the detectors that accept the DEP provided by SAND
as input and whose output satisfies the specification of the corresponding ab-
stract detectors described in Section 4. That is, for each correct node u, cSPU
only outputs complete and real universe, cWPU may output a real universe that
is not complete, while �cPU may provide arbitrary output for a fixed number of
computation states. However, all three detectors eventually output the complete
and real universe for u. Observe that the detectors have to comply with the
specification even though DEP may grow infinitely large.

In SAND, each process u observes the output of the detector and immediately
outputs the universe presented by the detector without further modification. By
the construction of SAND proves the following theorem.

Theorem 4. Considering layouts without simple snares and assuming that the
transmission range is at least twice as large as the neighborhood distance, the
Sybil Attack Neighborhood Detection Algorithm SAND provides a conflict-aware
deterministic solution to the Neighborhood Discovery Problem as follows: SNDP
if cSPU detector is used; WNDP if cWPU is used; and �NDP if �cPU is used.

Similar to Chandra et al [28] we can introduce the concept of a weakest universe
detector needed to solve a certain problem. A universe detector U is the weakest
detector required to solve a problem P if the following two properties hold:

– there is an algorithm A that uses U to solve P ;
– there is another algorithm B that uses the input of an arbitrary solution S

of P to implement U .

That is, B uses the output of S and provides the computations expected of U .
The intuition is that if any solution can be used to implement U , then every
solution needs the strength of at least U . Hence, the idea that U is the weakest
detector.

Observe that SAND provides the solutions using these detectors to the re-
spective problems. Note also that the outputs of the neighborhood discovery
problems that we defined SNDP , WNDP and �NDP can be used as the re-
spective universe detectors SPU , WPU and �PU . For example, if a process u
in SNDP outputs its neighborhood set, this neighborhood set can be used to
point to the real universe. Hence the following proposition.

Proposition 1. Concrete universe detectors cSPU , cWPU and �cPU are the
weakest detectors required to solve SNDP, WNDP and �NDP respectively.

Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks 77

8 Detector Implementation and Future Research

Detector Implementation. According to Theorem 1, the universe detectors
employed by our solution to the neighborhood discovery problem are not them-
selves implementable in asynchronous systems. The actual implementation of
the detectors can depend on the particular properties of the application. Here
are a few possible ways of constructing the detectors. The nodes may be aware of
the bounds on faulty nodes speed. That is, the detectors will know the maximum
number of fictitious nodes they have to deal with. The nodes may contain some
topological knowledge of the network. For example, the nodes may know that
the network is a grid. Alternatively, the nodes may have secure communication
with several trusted neighbors to ensure their presence in the selected universe.

Future Research. We conclude the paper by outlining several interesting areas
of research that our study suggests. Even though the concrete detectors we
describe in the paper are minimal from the application perspective, it is unclear if
the input that SAND provides is optimal. That is, is there any other information
that can be gathered in the asynchronous model that can help the detector decide
if a certain universe is real. We suspect that SAND provides the maximum
possible information but we would like to rigorously prove it.

In this study, we assume completely reliable communication within a certain
radius of the transmitting node Rmin. However, in practice the propagation
patterns of low-power wireless radios used in sensor and other ad hoc networks
are highly irregular. See for example Zhou et al [26]. The problem of adapting
a more realistic communication model is left open. Similarly, it is not clear how
our analysis fairs against a model where nodes are allowed to move.

Another question is the true relationship between the universe and fault de-
tectors. Observe that unlike fault detectors, the universe detectors require addi-
tional layout properties to enable the solution to the neighborhood discovery. It
would be interesting to research if there is a complete analogue to fault detectors
for this problem.

References

1. Douceur, J.: The sybil attack. In: IPTPS, Cambridge, MA, March 2002, vol. 1, pp.
251–260 (2002)

2. Wood, A., Stankovic, J.: Denial of service in sensor networks. IEEE Com-
puter 35(10), 54–62 (2002)

3. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and
countermeasures. Ad Hoc Networks 1(2-3), 293–315 (2003)

4. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

5. Deng, J., Han, R., Mishra, S.: Security support for in-network processing in wireless
sensor networks. In: SASN, pp. 83–93 (October 2003)

6. Martucci, L., Kohlweiss, M., Andersson, C., Panchenko, A.: Self-certified sybil-free
pseudonyms. In: The first ACM conference on Wireless network security WiSec,
pp. 154–159. ACM, New York (2008)

7. Parno, B., Perrig, A., Gligor, V.: Distributed detection of node replication attacks
in sensor networks. In: IEEE Symposium on Security and Privacy, pp. 49–63 (May
2005)

78 A. Vora et al.

8. Theodorakopoulos, G., Baras, J.: On trust models and trust evaluation metrics
for ad hoc networks. IEEE Journal on Selected Areas in Communications 24(2),
318–328 (2006)

9. Yang, H., Ye, F., Yuan, Y., Lu, S., Arbaugh, W.: Toward resilient security in
wireless sensor networks. In: MobiHoc, pp. 34–45 (May 2005)

10. Zhang, Q., Wang, P., Reeves, D., Ning, P.: Defending against sybil attacks in
sensor networks. In: Second International Workshop on Security in Distributed
Computing Systems, pp. 185–191 (June 2005)

11. Zhu, S., Setia, S., Jajodia, S.: LEAP - efficient security mechanisms for large-scale
distributed sensor networks. In: SenSys., pp. 308–309 (November 2003)

12. Buchegger, S., Boudec, J.L.: A robust reputation system for mobile ad-hoc. Techni-
cal Report EPFL-IC-LCA-50, EPFL, Lausanne, Switzerland (November 11, 2003)

13. Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: P2PENCON, pp.
128–132 (2005)

14. Jelasity, M., Montresor, A., Babaoglu, O.: Towards secure epidemics: Detection and
removal of malicious peers in epidemic-style protocols. Technical Report UBLCS-
2003-14, University of Bologna (December 11, 2003)

15. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks:
analysis and defenses. In: IPSN, pp. 259–268 (April 2004)

16. Shi, E., Perrig, A.: Designing secure sensor networks. IEEE Wireless Communica-
tions 11(6) (December 2004)

17. Demirbas, M., Song, Y.: An RSSI-based scheme for sybil attack detection in wire-
less sensor networks. In: WOWMOM, pp. 564–570 (June 2006)

18. Capkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal
on Selected Areas in Communications 24(2), 221–232 (2006)

19. Kindberg, T., Zhang, K.: Validating and securing spontaneous associations between
wireless devices. In: ISW: International Workshop on Information Security, Bristol,
UK, pp. 44–53 (October 2003)

20. Lazos, L., Poovendran, R., Čapkun, S.: ROPE: Robust position estimation in wire-
less sensor networks. In: IPSN, Los Angeles, CA, pp. 324–331 (April 2005)

21. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
Proceedings of the ACM workshop on Wireless security, San Diego, CA, pp. 1–10
(2003)

22. Vora, A., Nesterenko, M.: Secure location verification using radio broadcast. IEEE
Transactions on Dependable and Secure Computing 3(4), 369–383 (2006)

23. Delat, S., Mandal, P.S., Rokicki, M., Tixeuil, S.: Deterministic Secure Positioning
in Wireless Sensor Networks. In: DCOSS (June 2008) (to appear)

24. Hwang, J., He, T., Kim, Y.: Detecting phantom nodes in wireless sensor networks.
In: 26th IEEE Conference on Computer Communications InfoCom, pp. 2391–2395
(2007)

25. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine faults. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056,
pp. 212–226. Springer, Heidelberg (2006)

26. Zhou, G., He, T., Krishnamurthy, S., Stankovic, J.: Impact of radio irregularity on
wireless sensor networks. In: The 2nd International Conference on Mobile Systems,
Applications, and Services MobiSys, pp. 125–138 (June 2004)

27. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
Communications of the ACM 43(2), 225–267 (1996)

28. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722 (1996)

29. Rappaport, T.: Wireless communications - Principles and Practice. Prentice-Hall,
Englewood Cliffs (2002)

30. Vora, A., Nesterenko, M., Tixeuil, S., Delaet, S.: Universe detectors for sybil defense
in ad hoc wireless networks. Technical Report No 6529, INRIA (May 2008)

Self-stabilizing Numerical Iterative Computation

Ezra N. Hoch1, Danny Bickson2, and Danny Dolev1,�

1 School of Computer Science and Engineering
The Hebrew University of Jerusalem

Jerusalem 91904, Israel
2 IBM Haifa Research Lab

Mount Carmel
Haifa 31905, Israel

Abstract. Many challenging tasks in sensor networks, including sensor
calibration, ranking of nodes, monitoring, event region detection, collab-
orative filtering, collaborative signal processing, etc., can be formulated
as a problem of solving a linear system of equations. Several recent works
propose different distributed algorithms for solving these problems, usu-
ally by using linear iterative numerical methods.

In this work, we extend the settings of the above approaches, by
adding another dimension to the problem. Specifically, we are interested
in self-stabilizing algorithms, that continuously run and converge to a
solution from any initial state. This aspect of the problem is highly im-
portant due to the dynamic nature of the network and the frequent
changes in the measured environment.

In this paper, we link together algorithms from two different domains.
On the one hand, we use the rich linear algebra literature of linear it-
erative methods for solving systems of linear equations, which are natu-
rally distributed with rapid convergence properties. On the other hand,
we are interested in self-stabilizing algorithms, where the input to the
computation is constantly changing, and we would like the algorithms to
converge from any initial state. We propose a simple novel method called
SS-Iterative as a self-stabilizing variant of the linear iterative meth-
ods. We prove that under mild conditions the self-stabilizing algorithm
converges to a desired result. We further extend these results to handle
the asynchronous case.

As a case study, we discuss the sensor calibration problem and provide
simulation results to support the applicability of our approach.

1 Introduction

Many challenging tasks in sensor networks, for example distributed ranking al-
gorithms of nodes and data items [3], collaborative filtering [1], localization [10],
collaborative signal processing [12], region detection [9], etc., can be formulated
as a problem of solving a linear system of equations. Several recent works [10],

� Part of the work was done while the author visited Cornell university. The work was
funded in part by ISF.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 79–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 E.N. Hoch, D. Bickson, and D. Dolev

[12],[9] propose different distributed algorithms for solving these problems, usu-
ally by linear iterative numerical methods.

In this work, we extend the settings of the above approaches by adding an-
other dimension to the problem. Specifically, we are interested in self-stabilizing
algorithms, that continuously run and converge to a solution from any initial
state. This aspect of the problem is highly important due to the dynamic nature
of the network and the frequent changes in the measured environment.

As a case study, we show that the calibration of local sensors’ readings can
be formulated as a linear system of equations Ax = b, where x represents the
calibrated output reading, b represents the local reading, and A represents a
weighted communication graph. However, our work is general and can be applied
to any problem that can be formulated as a distributed solution to a linear system
of equations, including the previous works mentioned above.

Consider a distributed system of sensors measuring real-world data. Sensors
are located in different areas; for example, the senors are spread throughout a
building and they measure the temperature to adjust the heating or cooling.
We would like the collected data to be as reliable as possible, reflecting closely
the changing environmental conditions. One of the obstacles we face when de-
signing algorithms that collect data from a sensor network are measurement
errors. There are two main types of inaccuracies of sensors’ measurements: noisy
environment and sensing equipment which is not calibrated. It is desirable that
sensors could execute a distributed algorithm for calibrating their environmental
readings. In this setting sensors are allowed to communicate among themselves,
using data from other nodes to affect their reported individual reading. Further-
more, we would like our calibration algorithm to have fault-tolerance properties.
Specifically, we are interested in self-stabilizing algorithms [7] which converge to
an optimal solution from any initial state. Observe that self-stabilization helps
also in deploying the sensors. There is no need to explicitly synchronize the sen-
sors, once enough of them are deployed and begin functioning the results will
converge to the expected value.

The main challenge we have faced in this work, is that in the classical linear
algebra literature, b is assumed to be constant. In our settings, the environment
is constantly changing and the computed algorithm never terminates, leading to
constantly changing values of b. In this paper, we ask the following question: “Is
it possible to devise a self-stabilizing numerical iterative method?” We answer
affirmatively, and show that under minor conditions it is possible to devise a self-
stabilizing algorithm that solves a dynamic system of linear equations, where the
input to the system is constantly changing.

To the best of our knowledge, this is the first work tackling this challenging
problem. We believe that our approach can have numerous applications in the
field of distributed self-stabilizing computation.

Other works discuss fault tolerance aspects of distributed computation. For
example, overcoming faults in sensors by averaging the input was investigated
in [11] providing a centralized algorithm. Quantifying faulty nodes’ effect on the
system’s output is discussed in [8] and [5]. These papers consider bounded input

Self-stabilizing Numerical Iterative Computation 81

paths and their effect on the stability of the output. In [6] infinite input paths are
considered under the assumption that only specific sensors’ input may change.
All three papers consider discrete input values, as opposed to a continuous set
of input values discussed in this paper.

The paper is constructed as follows. Section 2 defines the model and prob-
lem definition. Section 3 presents our novel algorithm SS-Iterative. Section 4
analyzes our algorithm and gives bounds on the convergence rate. Section 5
presents experimental results of running SS-Iterative using sample topolo-
gies. Section 6 extends our construction to the asynchronous case. We conclude
in Section 7.

2 Model and Problem Definition

We model the sensor calibration problem as follows. Given a directed commu-
nication graph G = (V, E), V is the set of nodes V = {p1, . . . , pn}, E is the set
of weighted edges connecting them (weights can be negative) and N(pi) denotes
pi’s neighbors. Edge weights are used to model the directional dependence be-
tween nodes’ outputs; i.e., if wpi,pj = 0 then there is no edge between pi and pj

and their output is not directly dependent on each other. In addition, we require
a non-zero self connected edge, wpi,pi �= 0, which represents the weight of pi’s
own input.

Initially, we assume a synchronous system: during a single round of communi-
cation, any pair of connected nodes may send a single message on each directed
edge. Each round r, each node pi has a scalar input value Ipi(r), which repre-
sents the local reading of the sensor.1 In addition, pi outputs its output value,
which is denoted by Opi(r); both inputs and outputs are from the domain of
real numbers. Denote by I(r) the input vector of the entire system at round r,
and by O(r) the output vector of the system at the end of round r. In Section 6
we relax the assumption of synchronous rounds and provide a variant of the
algorithm which works in asynchronous settings.

The schematic operation of each node pi at round r is composed of the follow-
ing steps: (a) read the value of Ipi(r); (b) send messages; (c) receive messages;
and (d) do some processing and output Opi(r). Then a new round is started,
and the nodes continue so forever.

Definition 1. A configuration C of the system at round r consists of the state
of each node prior to performing any operation at round r; this configuration is
denoted by C(r).

Definition 2. An input sequence I of length � is a list of � vectors such that
each v ∈ I is a possible input vector of the system (i.e., v ∈ D, the domain
of allowed values). An output sequence O of length � is a list such that each
v ∈ O can potentially be an output vector of the system.

1 For simplicity of notations we use scalar variables in the paper. An extension to the
vector case (where each sensor measures a set of measurements) is immediate.

82 E.N. Hoch, D. Bickson, and D. Dolev

Definition 3. A step from configuration C to configuration C′ on input vector v
is legal if C′ is reached from C by the system when having v as the input vector.
u is produced by a legal step if u is the output vector of the system resulting
from such a legal step.

Definition 4. A run of a system on input sequence I = {v(1), . . . ,v(�)} start-
ing from configuration C(r) is the sequence C(r), O(r), C(r + 1), O(r + 1), . . . s.t.
for any i ≥ 0: the step from C(r + i) to C(r + i + 1) on input vector v(i + 1) is
legal, and O(r + i) is produced by that legal step. The system is said to produce
the output sequence O = {O(r), . . . , O(r + � − 1)}.

In the special case when the sensor observations (the input to the system) are
fixed, the output decision of the sensors should converge to a solution that pre-
serves the linear relations among node inputs and outputs. More formally, con-
sider an input sequence I of identical input vectors; i.e., I = {v,v,v, . . . }. It is
desired that for such an input a run from any configuration C on I would end up
producing an output sequence O = {u(1),u(2), . . . } such that ||u(i) − u|| → 0
as i → ∞, for a u that solves the following linear system of equations:

ui = wpi,pi · vi +
∑

pj∈N(pi)

wpi,pj · uj . (1)

We assume that the above equations are uniquely solvable, denoting u as the
solution to v.

One of the most efficient distributed approaches for solving a set of linear
equations of the type Ax = b is by using linear iterative algorithms. Unlike
Gaussian elimination, which has a cost of O(n3), where n is the number of
variables, an iterative algorithm usually solves a system of linear equations in
time of O(n2r,) where r is the number of iterations, which is typically logarithmic
in n. These algorithms are naturally distributed and work well in asynchronous
settings. Furthermore, when converging, the algorithms converge to a solution
from any initial state. An excellent survey of such methods is found in [2].

The main novel contribution of this paper is in analyzing the self-stabilizing
properties of algorithms from the linear iterative methods domain. In a practical
setting, it is highly unreasonable to assume that sensor readings do not change
over time. However, it is reasonable to assume that at steady state the change in
sensor readings is bounded. Informally, in this work we show that once the input
readings are bounded, the output solution is bounded as well. This useful obser-
vation enables us to tie together numerical iterative methods and dynamically
changing environments in a self-stabilizing manner.

The following definition bounds the change in sensor observations:

Definition 5. An input sequence I = {v(1),v(2), . . . ,v(�)} is δ-bounded
around v if for every i, 1 ≤ i ≤ �, it holds that ||v(i) − v||∞ ≤ δ.2

Definition 5 states that a sequence I is δ-bounded if all the vectors in I are
bounded within an n dimensional hypercube with an edge 2δ, centered around a
2 ||x||∞ = maxi{|xi|}.

Self-stabilizing Numerical Iterative Computation 83

point v. We note that once changes in the input are not bounded, then no efficient
algorithm (especially in a network that is sparsely connected) can calculate the
output fast enough. For example, if the diameter of the communication graph
is D, for some system of equations it would take at least D rounds for the
information exchange for input readings at one side of the network to propagate
to the other side of the network.

Definition 6. Let I be an input sequence that is δ-bounded around v and let
u be the solution to input v. A run from configuration C on input sequence I
ε-converges to its solution if the produced output sequence O = {u(1),u(2), . . .
u(∆t)} satisfies that ||u(∆t) − u)||∞ ≤ ε(∆t, δ, C); where ε is a function of ∆t, δ
and C.

Definition 6 requires that if - starting from configuration C - the inputs are in
an n dimensional hypercube of radius δ around v then the output at time ∆t is
bounded within some n dimensional hypercube around u with radius ε(∆t, δ, C).
We aim at an ε(∆t, δ, C) that decreases as ∆t increases, as long as the inputs
are bounded by the same v-centered, δ-radius hypercube. Clearly, for δ > 0,
ε(∆t, δ, C) > 0 for any ∆t. That is, there is some minimal radius δ′ > 0 around
u s.t. we cannot ensure a tighter bound.

The above definition considers a single initial configuration, and a single in-
put sequence I. We are interested in an algorithm that works for all initial
configurations and all input sequences.

Definition 7. An algorithm A ε-converges for δ-bounded input sequence I if
every run (from any configuration) on I, ε-converges to its solution. An al-
gorithm A ε-always converges if for every δ-bounded input sequence I, A
ε-converges.

Definition 7 formally defines the problem at hand, as an algorithm A that always
converges has the desired self-stabilizing property: for any system state, once the
sensors’ readings changes are bounded, the change in output of the entire system
is bounded as well.

Our goal is to find an algorithm A that is ε-always converging for a provably
“good” ε. Moreover, we aim at having A efficient also in its message complexity
and simplicity of code, allowing lightweight sensors to actually implement it.

3 Our Proposed Solution

An equivalent formulation of the update rule Eq. (1) is

ui = wpi,pi · vi +
∑
j �=i

wpi,pj · uj .

The above equation states a condition on pi’s output, in regard to pi’s inputs
and pi’s neighbors’ output. Thus, it encapsulates the requirement that different

84 E.N. Hoch, D. Bickson, and D. Dolev

nodes influence each other’s reported readings, while taking into consideration
their local readings as well.

Since wpi,pi �= 0, the above equation can be stated as:

1
wpi,pi

ui −
∑
j �=i

wpi,pj

wpi,pi

· uj = vi .

By denoting wi,j = −wpi,pj

wpi,pi
(for i �= j) and wi,i = 1

wpi,pi
we get:∑

j

wi,j · uj = vi . (2)

Let W be the matrix that has wi,j as entries, Eq. (2) can be written in linear
algebra notation, (s.t. it applies to all nodes simultaneously):

Wu = v . (3)

If we consider a non-self-stabilizing system in which the inputs do not change
(that is, the input is fixed to v), then Eq. (3) can be seen as Ax = b, where A
and b are given. In such a case, we are interested in finding the value of x, which
is a vector of n unknown variables. However, we are interested in the case where
v changes over time, and thus Eq. (3) does not describe the problem properly,
but rather helps in understanding the motivation for our solution.

We use a modified update rule (relative to Eq. (1)):

Opi(r + 1) = wpi,pi · Ipi(r + 1) +
∑
j �=i

wpi,pj · Opj (r) . (4)

Clearly, for the case of δ = 0, a 0-bounded input sequence I, if (Opi(r + 1) −
Opi(r)) −→ 0 as r → ∞ then Eq. (4) converges to the solution of Eq. (1). Thus,
if the update rule of Eq. (4) is executed simultaneously by all nodes, and for all
of the nodes (Opi(r + 1) − Opi(r)) −→ 0, then it also solves Eq. (3). That is,
if each node locally executes Eq. (4) then the global solution is reached. This
observation motivates algorithm SS-Iterative in Figure 1.

Remark 1. In SS-Iterative there is no notion of the “current round number r”.
That is, pi reads and writes to the variables Ipi and Opi without being “aware”
of r. When we discuss the algorithm “from the outside”, we will consider Ipi(r)
and Opi(r) instead of just Ipi , Opi .

Consider pi is running at round r + 1. When pi performs Line 03, it sends the
value of Opi . The last time Opi was updated was at Line 04 and Line 06 of round
r. Thus, the value sent by pi at round r + 1 is actually Opi(r). Therefore, the
values received from pj by pi and used to update Opi(r+1) are Opj (r). However,
the value read by pi in Line 04 is the value of Ipi (r + 1). Concluding that pi

updates Opi(r + 1) exactly according to Eq. (4).

Remark 2. Each node pi must know the values of wpi,pj as “part of the code”.
Thus, these values cannot be subject to transient faults.

Self-stabilizing Numerical Iterative Computation 85

Algorithm SS-Iterative

01: Each round do: /* executed on node pi */

/* send current value of Opi to all neighbors */
02: for each pj ∈ N(pi)
03: send Opi to pj ;

/* update Opi according to values sent by neighbors */
04: set Opi := wpi,pi · Ipi ;
05: for each value Opj received:
06: update Opi := Opi + wpi,pj · Opj ;

07: od.

Fig. 1. A self-stabilizing iterative algorithm

4 Analysis of SS-Iterative

[2] shows that the update rule Eq. (4) can be written in linear algebra form as

O(r + 1) = AI(r + 1) + BO(r) , (5)

where A is a diagonal matrix with wpi,pi in the main diagonal, and Bij = wpi,pj

for i �= j

A � (diag{W})−1 , B � −(AW − In×n) (6)

where In×n is the identity matrix. Using this update rule to solve a set of linear
equations iteratively is known as the Jacobi algorithm.

As noted in Section 2, when the input sequence is constant (i.e., I(r) = v for
all r) the iterative execution of the above equations converges to u = Av + Bu,
which is the same as u = W−1v, thus solving Eq. (3). Following, we analyze the
result of iteratively applying these equations for δ-bounded input sequences.

Let I be an input sequence of length � that is δ-bounded around vector v.
That is, I = I(r), I(r + 1), . . . , I(r + � − 1) for some round r. Note that SS-

Iterative saves a single scalar variable at each node, and thus the configuration
of round r + 1 can be defined by the value of O(r) at round r. Consider SS-

Iterative’s run, starting from an arbitrary configuration at round r. We aim
at showing that O(r + ∆t) is bounded by a hypercube centered at u. Denote by
c(∆t) � O(r +∆t)−u. If we show that ||c(∆t)||∞ is bounded (as ∆t increases),
then O(r + ∆t) is within a bounded hypercube centered at u. Consider c(1):

c(1) = O(r + 1) − u
= AI(r + 1) + BO(r) − (Av + Bu)
= A(I(r + 1) − v) + B(O(r) − u)
= A(I(r + 1) − v) + Bc(0) . (7)

86 E.N. Hoch, D. Bickson, and D. Dolev

Since I is a δ-bounded input sequence around v, each I(r + ∆t) can be denoted
as v + D(r + ∆t) s.t. D(r + ∆t) ∈ R

n is a vector, and ||D(r + ∆t)||∞ ≤ δ. That
is, D(r + ∆t) = I(r + ∆t) − v.

Claim. At round r + ∆t, it holds that c(∆t) =
∑∆t−1

j=0 BjAD(r + ∆t − j) +
B∆tc(0).

Proof. Proof by induction. The base of the induction was shown for c(1); see
Eq. (7). Assume that the claim holds for ∆t = k. Thus, c(k) =

∑k−1
j=0 BjAD(r +

k − j) + Bkc(0). By the update rule in Eq. (5), we have that O(r + k + 1) =
AI(r + k + 1) + BO(r + k). Combining the two equations implies

c(k + 1) = O(r + k + 1) − u

= AI(r + k + 1) + BO(r + k) − (Av + Bu)
= A(I(r + k + 1) − v) + B(O(r + k) − u)
= AD(r + k + 1) + Bc(k)

= AD(r + k + 1) +
k−1∑
j=0

Bj+1AD(r + k − j) + Bk+1c(0)

= AD(r + k + 1) +
k∑

j=1

BjAD(r + k + 1 − j) + Bk+1c(0)

=
k∑

j=0

BjAD(r + k + 1 − j) + Bk+1c(0) .

Thus, if the claim holds for ∆t = k it also holds for ∆t = k + 1; and we have
that the claim holds for all ∆t ≥ 0. ��
Definition 8. A matrix Mn×n is diagonally dominant if |Mii| > Σn

j �=i|Mij |.
A matrix Mn×n is normalized diagonally dominant (normalized, for short) if
M is diagonally dominant, and |Mii| ≥ 1.

Lemma 1. For a normalized diagonally dominant matrix W , it holds that
||A||∞ ≤ 1 and ||B||∞ < 1, where A, B are defined in Eq. (6) and ||A||∞ �
maxx �=0

||Ax||∞
||x||∞ .

Proof. A is zero except for its main diagonal for which Ai,i = wpi,pi = 1
wi,i

.
Since |Wii| ≥ 1, we have that |Ai,i| ≤ 1. Thus, it holds that ||Ax||∞ ≤ ||x||∞.
Furthermore, maxx �=0

||Ax||∞
||x||∞ ≤ 1, i.e., ||A||∞ ≤ 1. Regarding B, Bi,j = wpi,pj

for i �= j and 0 for i = j. Since W is assumed to be normalized diagonally
dominant, we have that

∑
j �=i |Wi,j | < |Wi,i|, thus

∑
j �=i |wpi,pj | < 1. Therefore,∑

j |Bi,j | =
∑

j �=i |wpi,pj | < 1 for all i. In total, for any x we have ||Bx||∞ <
||x||∞, leading to ||B||∞ < 1. ��
If W is a diagonally dominant matrix then node pi’s own input effects pi’s output
more than the sum of all of pi’s neighbors outputs. That is, the weight of pi’s
input is at least the sum of weights of pi’s neighbors outputs.

Self-stabilizing Numerical Iterative Computation 87

Theorem 1. Given a normalized diagonally dominant and invertible W , there
are constants c1, c2, where c1 > 0, and 1 > c2 > 0, such that SS-Iterative

ε-always converges with ε(∆t, δ, C) = δ · c1 + (c2)∆t · ||O(r) − u||∞.

Proof. By Lemma 1 it holds that ||A||∞ ≤ 1 and ||B||∞ < 1. Consider a δ-
bounded input sequence I around v, and SS-Iterative’s run starting from an
arbitrary state O(r). We are interested in the behavior of ||c(∆t)||∞:

||c(∆t)||∞ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∆t−1∑
j=0

BjAD(r + ∆t − j) + B∆tc(0)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∆t−1∑
j=0

BjAD(r + ∆t − j)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+
∣∣∣∣B∆tc(0)

∣∣∣∣
∞

≤
∆t−1∑
j=0

||B||j∞ ||AD(r + ∆t − j)||∞ + ||B||∆t
∞ ||c(0)||∞

≤ δ · ||A||∞
∆t−1∑
j=0

||B||j∞ + ||B||∆t
∞ ||c(0)||∞

= δ · ||A||∞
1 − ||B||∆t

∞
1 − ||B||∞

+ ||B||∆t
∞ ||c(0)||∞ . (8)

For an input sequence I that is δ-bounded around v, denote by u the solution
to the original system of equations Wu = v. By Eq. (8),

||O(r + ∆t) − u||∞ ≤ δ · ||A||∞
1 − ||B||∆t

∞
1 − ||B||∞

+ ||B||∆t
∞ ||c(0)||∞ .

Since ||B||∞ < 1, we have that 1−||B||∆t
∞

1−||B||∞ ≤ 1
1−||B||∞ and by setting c1 = ||A||∞

1−||B||∞
it holds that ||A||∞

1−||B||∆t
∞

1−||B||∞ ≤ c1. By setting c2 = ||B||∞ and recalling that
c(0) = O(r) − u we are done. ��

Theorem 1 states sufficient conditions s.t. SS-Iterative ε-always converges.
Moreover, the algorithm SS-Iterative is lightweight, as it requires nodes to
send only a single value to every neighbor on each round.

5 Experimental Results

For illustrating the behavior of our proposed algorithm, we have simulated SS-

Iterative using two sample topologies of one hundred nodes. Figure 2 depicts
a circular topology where each node is connected to its left and right neighbors.
Figure 3 shows a random unit disc graph, where nodes are randomly spread on
a plane, and each node is connected to the nodes that are within a distance of

88 E.N. Hoch, D. Bickson, and D. Dolev

iterations

va
lu

e
o

f δ

10 20 30

2

4

6

8

10

0.91

4.57

31.51

594.29

Fig. 2. Sim. of a Circle graph

iterations

va
lu

e
o

f δ

10 20 30 40

2

4

6

8

10

0.91

4.57

31.51

Fig. 3. Sim. of a Unit-Disc graph

1. The X-axis shows the number of iterations, and the Y-axis shows the value
of δ. Area colors in the heatmap depict the average of the following procedure:
randomly select a vector v and a δ-bounded sequence around v, run the sim-
ulation for the randomly selected values and return the L∞ distance between
the last output vector and u (calculated as u = W−1v). The heatmap uses a
log log scale. Both graphs clearly show that as δ decreases and the number of
iterations increases, the output of SS-Iterative converges to be bounded by a
small hypercube around u.

Note that the unit disc weighted topology matrix is characterized by ||A||∞ =
0.02, ||B||∞ = 0.97 while the circle graph is characterized by ||A||∞ = 0.33,
||B||∞ = 0.66. As expected, using unit disc topology requires a larger number
of iterations for convergence (depends on ||B||∞). In addition, in the unit disc
topology the value of δ has a lesser effect on the convergence, due to the value
of ||A||∞, which affects the minimal radius around the output. Since ||A||∞ is
smaller in the unit disc topology, increasing δ does not significantly affect the
convergence.

6 Extension to the Asynchronous Model

Our second novel contribution is in extending our model to support asynchronous
communications. In a large sensor network, it is unreasonable to assume that the
sensors operate in synchronous rounds. Furthermore, as known from the linear
iterative algorithms literature, algorithms usually converge in less asynchronous
rounds (when compared to synchronous rounds).

When considering the asynchronous model, it is more convenient to discuss
shared-memory as means of communication.3 Thus, assume that for each di-
rected edge between pi, pj there is a read-write register Rpi,pj that is written by
pi and read by pj .

An asynchronous run is an infinite sequence of configurations C0 → C1 → . . .
such that some process p performs an atomic step between configuration Ci and
3 In [7] it is shown how to convert an algorithm based on shared-memory to a message-

passing algorithm with links of bounded capacity.

Self-stabilizing Numerical Iterative Computation 89

Ci+1. An atomic step consists of reading or writing from a single register. Notice
that in the current model a configuration consists of all of the registers and of
the local variables at the different nodes.

In this section we again prove that starting from an arbitrary configuration,
when the inputs are bounded, the outputs are bounded as well. We consider each
configuration Cr to be assigned a vector input I(r) such that if node pi reads
the input when performing an atomic step on Cr it reads the value of Ipi(r).
Equivalently, the output vector of configuration Cr is O(r).

Figure 4 outlines Async-SS-Iterative which is a direct translation of SS-

Iterative to the shared-memory model.

Algorithm Async-SS-Iterative

01: Forever do: /* executed on node pi */

/* write current value of Opi to all neighbors */
02: for each pj ∈ N(pi)
03: write Opi to Rpi,pj ;

/* update Opi according to values of neighbors */
04: set Opi := wpi,pi · Ipi ;
05: for each pj ∈ N(pi):
06: read Rpj ,pi into temp;
07: update Opi := Opi + wpi,pj · temp;

08: od.

Fig. 4. A self-stabilizing iterative algorithm for asynchronous networks

Async-SS-Iterative consists of two phases: in the first, the previous value
of Opi is written to all its neighbors. In the second phase pi calculates its new
value of Opi by reading the registers of all its neighbors.

We consider only “fair” runs, in which each node performs an atomic step
infinitely many times. Thus, each node performs both phases infinitely many
times. A round is defined to be the shortest prefix of a run such that each node
has performed lines 02-07 in the algorithm. We number each atomic step and
each round. Note that a round consists of many atomic steps.

We model a fair run as follows. Each node pi performs infinitely many atomic
steps, and participates in infinitely many rounds. Notice that the registers pi reads
in round k + 1 have all been last written to, no earlier than during round k. Since a
round consists of each node performing all the steps in the algorithm, each node pi

manages to read all of its neighboring registers and write to all of its neighboring
registers every round. Thus, there is some atomic step r (during round k + 1) such
that:

Opi(r) = wpi,pi · Ipi(r
′) +

∑
j �=i

wpi,pj · Opj (r′j) ,

where r′, r′j (for all pj �= pi) are smaller than r and are from at least round k.

90 E.N. Hoch, D. Bickson, and D. Dolev

Let u be such that u = Av + Bu, and let the inputs be from a δ-bounded
input sequence around v. Denote c(r) = O(r) − u and z = maxi |cpi(0)|.

Theorem 2. Given a normalized diagonally dominant and invertible W , and
while considering only fair runs, there are constants c1, c2, where c1 > 0, and 1 >
c2 > 0, such that Async-SS-Iterative ε-always converges with ε(∆t, δ, C) =
δ · c1 + (c2)∆t · z; where ∆t counts the asynchronous rounds of a fair run.

Proof. Notice that if pi did not perform the rth atomic step then Opi(r) =
Opi(r − 1) and therefore cpi(r) = cpi(r − 1). Consider the value of cpi(r) when
pi did perform the rth atomic step (during round k + 1).

cpi(r) = Opi(r) − upi

= wpi,pi · Ipi (r
′) +

∑
j �=i

wpi,pj · Opj (r′j) − wpi,pi · vpi −
∑
j �=i

wpi,pj · upi

= wpi,pi · (Ipi (r
′) − vpi) +

∑
j �=i

wpi,pj · (Opj (r′j) − upi)

= wpi,pi · (Ipi (r
′) − vpi) +

∑
j �=i

wpi,pj · cpj (r′j) ,

where r′ and the different r′j are smaller than r and are all from round k or
round k + 1.

By using Lemma 1 we get:

|cpi(r)| ≤ |wpi,pi · (Ipi(r
′) − vpi)| + max

pj

|cpj (r′j)|
∑
j �=i

|wpi,pj |

≤ |wpi,pi · (Ipi(r
′) − vpi)| + ||B||∞ |cpmax(rmax)|

≤ δ + ||B||∞ |cpmax (rmax)| ,

for some pmax and rmax ≤ r that is from round k or k + 1.
Therefore, for any pi during round k+1 there is a list of length � ≥ k of nodes

p1, p2, . . . , p� and a sequence of length � of atomic steps r1 > r2 > · · · > r� = 0,
such that

|cpi(r)| ≤ δ + ||B||∞ |cp1(r1)|
≤ δ + ||B||∞ (δ + ||B||∞ |cp2(r2)|)
= δ · (1 + ||B||∞) + ||B||2∞ |cp2(r2)|

≤ δ ·
�−1∑
z=0

||B||z∞ + ||B||�∞ |cp�
(r�)|

= δ · 1 − ||B||�∞
1 − ||B||∞

+ ||B||�∞ |cp�
(0)| .

Denote by c1 � 1
1−||B||∞ , and c2 � ||B||∞. We have that for node pi perform-

ing the rth atomic step during round k it holds that |cpi(r)| ≤ δ · c1 + c�
2 · z ≤

δ · c1 + ck
2 · z. ��

Self-stabilizing Numerical Iterative Computation 91

In fair runs, there are infinitely many rounds k, thus, as l and r go to infinity,
we have that ||O(r)||∞ is bounded by a hypercube of length δ · c1 around u.

7 Discussion

We have shown that the algorithm SS-Iterative is a modification of the Jacobi
iterative method to solve a set of equations Ax = b, where A is given and b is
dynamically changing but bounded. Moreover, Theorem 1 is a generalization of
previous analysis of Jacobi’s convergence. Our motivation for SS-Iterative orig-
inates from the sensor calibration problem where sensors need to calibrate their
noisy readings. Unlike previous approaches to this problem, we assume a dynamic
system with an infinite execution of the algorithm. In this setting the readings of
the sensors continuously change. Under the assumption that the readings’ changes
are bounded, we have shown that the calibrated output is bounded as well.

Further application for SS-Iterative can be found in any setting where it is
desired to solve Ax = b in a converging and self-stabilizing manner, while A is
given, and b may change slightly from one round to the next. Notice that the
analysis given in Section 4 holds in such a system.

As noted in Remark 2 the matrix A is “part of the code”. An optional alter-
native to the current solution is to compute A−1 (the inverted matrix of A) be-
forehand and include it “as part of the code”. Thus, each node could locally solve
x = A−1b, and it can be shown that x will be bounded (as long as b is bounded).
The main problem with such a solution is the connectivity requirements it incurs.
In our solution, scalar values are sent in the network only between direct neigh-
bors. The matrix W represents a weighted adjacency graph. Once inverted, the
matrix W−1 might not be sparse. A non-zero entry w−1

ij ∈ W−1 means that node
pi needs to communicate with node pj . This extra communication might cause the
algorithm to lose its self-stabilizing properties, as non-neighboring nodes would
require a self-stabilizing overlay network for their communication.

The assumption of a predefined A is suitable for static networks in which
the communication graph is predetermined. For dynamic networks, it would be
interesting to adjust SS-Iterative to discover the connectivity of the network,
inferring the optimal weights dynamically. We assume that after the weights are
calculated, the topology of the sensor network remains stable, thus the conver-
gence analysis of Section 4 should hold.

7.1 Relation to Perturbation Theory

A large amount of research focused on the problem of solving Ax = b when A
and b are not exactly known. That is, let Â = A + δA and b̂ = b + δb, and
consider the equation Âx̂ = b̂; what can be said about x in relation to x̂?

Our setting is “easier” in one sense, and “harder” in a different sense. In our
setting A is known, i.e., δA = 0. However, b̂ is not well defined. That is, the
input vector - which is described by b̂ - changes over time. When solving Âx̂ = b̂
it is assumed that there is some b that is constant but it was measured with an

92 E.N. Hoch, D. Bickson, and D. Dolev

error. In our case, b is not constant as it changes over time, while it represents
the measurements correctly.

As a future research, it would be interesting to consider the implications of
adding inaccuracy to the measurements. The vast body of knowledge regarding
perturbation theory would definitely aid in this extension to our model.

7.2 Relation to Convex Optimization

Many practical optimization problems are given in the quadratic form f(x) =
1/2xAx − bTx, where the task is to compute minx f(x) distributively over a
communication network. A survey showing several applications can be found in
[3]. Example applications are monitoring, distributed computation of trust and
ranking of nodes and data items.

A standard way for solving minx f(x) is by computing the derivative and
comparing it to zero to get the global optimum. When the matrix A is symmetric,
f ′(x) = Ax − b = 0, and we get a linear system of equations Ax = b. In other
words, the convex optimization problem is reduced into a solution of a linear
system of equations.

Interior point methods [4, Ch. 11] solve linear programming problems by ap-
plying Newton method iteratively. Each computation of the Newton step involves
a solution of a linear systems of equations. An area of future work is to examine
the applications of our self-stabilizing algorithm to these methods. The diffi-
culties arise from the fact that the matrix A needs to be recomputed between
iterations, so nodes need to be synchronized and aware of the current iteration
taking place.

Acknowledgements

The authors would like to thank Golan Pundak for assisting with the simulations,
and the anonymous reviewers for their helpful comments.

References

1. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: ICDM 2007 (2007)

2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Calculation. Numerical
Methods. Prentice Hall, Englewood Cliffs (1989)

3. Bickson, D., Malkhi, D.: A unifying framework for rating users and data items
in peer-to-peer and social networks. Peer-to-Peer Networking and Applications
(PPNA) Journal (2008)

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

5. Davidovitch, L., Dolev, S., Rajsbaum, S.: Stability of multivalued continuous con-
sensus. SIAM Journal on Computing 37(4), 1057–1076 (2007)

6. Dolev, D., Hoch, E.N.: Ocd: Obsessive consensus disorder (or repetitive consen-
sus). In: Proc. of the 27st Int. Symposium on Principles of Distributed Computing
(PODC 2008), Tornoto, Canada (August 2008)

Self-stabilizing Numerical Iterative Computation 93

7. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
8. Dolev, S., Rajsbaum, S.: Stability of long-lived consensus. J. Comput. Syst.

Sci. 67(1), 26–45 (2003)
9. Fang, J., Li, H.: Distributed event-region detection in wireless sensor networks. In:

EURASIP J. Adv. Signal Process, New York, NY, United States, vol. 2008, pp.
1–10. Hindawi Publishing Corp. (January 2008)

10. Langendoen, K., Reijers, N.: Distributed localization in wireless sensor networks: a
quantitative comparison. In: Comput. Networks, New York, NY, USA, November
2003, vol. 43, pp. 499–518. Elsevier North-Holland, Inc., Amsterdam (2003)

11. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Com-
put. Syst. 8(4), 284–304 (1990)

12. Olfati-Saber, R.: Distributed Kalman Filtering for Sensor Networks. In: Proc. of
the 46th IEEE Conference on Decision and Control (December 2007)

A Self-stabilizing 2
3-Approximation Algorithm

for the Maximum Matching Problem

Fredrik Manne1, Morten Mjelde1, Laurence Pilard2, and Sébastien Tixeuil3,�

1 University of Bergen, Norway
{fredrikm,mortenm}@ii.uib.no

2 University of Franche Comté, France
laurence.pilard@iut-bm.univ-fcomte.fr

3 LIP6 & INRIA Grand Large, Université Pierre et Marie Curie - Paris 6, France
tixeuil@lri.fr

Abstract. The matching problem asks for a large set of disjoint edges in
a graph. It is a problem that has received considerable attention in both
the sequential and self-stabilizing literature. Previous work has resulted
in self-stabilizing algorithms for computing a maximal (1

2 -approximation)
matching in a general graph, as well as computing a 2

3 -approximation
on more specific graph types. In the following we present the first self-
stabilizing algorithm for finding a 2

3 -approximation to the maximum
matching problem in a general graph. We show that our new algorithm
stabilizes in at most exponential time under a distributed adversarial
daemon, and O(n2) rounds under a distributed fair daemon, where n is
the number of nodes in the graph.

Keywords: Self-stabilizing algorithm, 2
3 -Approximation, Maximum

matching.

1 Introduction

A matching in a graph G = (V, E) is a subset M of E such that no pair of edges
in M have common endpoints. We say that two nodes v and w are matched
if the edge (v, w) is in M . A matching M is maximal if no proper superset of
M is also a matching. A matching M is maximum if there does not exists any
matching with cardinality larger than |M |. While there exists sequential algo-
rithms for computing a maximum matching in polynomial time, the complexity
of such algorithms renders them impractical in many settings when applied to
large graphs. Thus, approximation algorithms are often used to rapidly provide
matchings that are within an acceptable margin of error. A maximal matching
can be computed in linear time over the size of the graph, and it is well known
that this results in a 1

2 -approximation to the maximum matching. In order to
compute matchings with approximation ratios better than 1

2 , augmenting paths

� Support for this work was given by the Aurora program for collaboration between
France and Norway.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 94–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Self-Stabilizing 2
3 -Approximation Algorithm 95

are often used. An augmenting path is a path in the graph, starting and end-
ing in an unmatched node and where every other edge is either unmatched or
matched, i.e. for each consecutive pair of edges exactly one of them must be-
long to the matching. Once an augmenting path p has been identified one can
increase the size of M by performing an augmenting step. This consists of re-
moving each matched edge of p from M and including every unmatched edge of
p in M . This way the cardinality of the matching is increased by one. Hopcroft
and Karp [12] show that given a graph G = (V, E) and a matching M ⊆ E then
if there does not exist an augmenting path of length at most three in G, then
M is a 2

3 -approximation to the maximum matching.
The matching problem is often used to model several real world situations.

Examples include the problem of assigning tasks to workers or creating pairs of
entities. The latter lends itself well to a distributed network, since processes in
the network may need to choose exactly one neighbor to communicate with.

In this paper we use augmenting paths and present a self-stabilizing algorithm
that computes a 2

3 -approximation to the maximum matching problem in a gen-
eral, unweighted graph. Our algorithm is based on using an existing maximal
matching, and then identifying augmenting paths of length three. These are then
used to improve the cardinality of the matching.

1.1 Self-stabilizing Algorithms

Self-stabilizing algorithms [3,4] are distributed algorithms that permit forward
failure recovery by means of an attractive property: starting from any arbitrary
initial state, the system autonomously resumes correct behavior within finite time.
Self-stabilization allows failure detection to be bypassed, yet does not make any
assumptions about the nature or the span of those failures. Central to the theory
of self-stabilization is the notion of daemon, an abstraction for the scheduling of
nodes in the system to execute their local code. A daemon is often viewed as an ad-
versary to the algorithm that tries to prevent stabilization by scheduling the worst
possible nodes for execution. The weakest possible requirement is that the daemon
is proper, i.e. only nodes whose scheduling would change the system state are ac-
tually scheduled (these nodes are privileged). Variants of daemons can be defined
along two axis: (i) a daemon may be sequential (meaning that no two privileged
nodes may be selected by the daemon simultaneously) or distributed (in which
case any number of privileged nodes may be selected at the same time), and (ii) a
daemon may also be fair (which ensures that every privileged node will be allowed
to move eventually) or adversarial (meaning that a privileged node may have to
wait indefinitely, yet always scheduling some privileged node for execution). Intu-
itively, distributed is a more general property than sequential, and adversarial is
a more general property than fair. Thus among these daemons, the most general
is the distributed adversarial, and the least general is the sequential fair daemon.
As a result, an algorithm that tolerates the most general adversary also tolerates
the least general one, but the converse is not true.

Time complexity is measured differently depending on the daemon used: for
any fair daemon time complexity is measured in rounds, where a round is the

96 F. Manne et al.

smallest sub-sequence of an execution in which every node privileged for at least
one move at the start of a round has either executed one of these moves during
the round, or has become ineligible to do so. For the adversarial sequential
daemon, complexity is measured in single node moves, while for the adversarial
distributed daemon it is measured in time steps, where a time step is one step
in the execution during which at least one privileged node executes one move.

When no nodes in the graph are privileged, we say that the algorithm is stable,
or has reached a stable configuration.

1.2 Related Work

The first self-stabilizing algorithm for computing a maximal matching was given
by Hsu and Huang [13]. The authors showed a stabilization time of O(n3) moves
under a sequential adversarial daemon. This analysis was later improved to O(n2)
by Tel [15] and to O(m) by Hedetniemi et al. [11], where m is the number of edges
in the graph. The algorithm assumes an anonymous graph and the sequential
daemon is used to break symmetry. By means of randomization Gradinariu and
Johnen [9] gave a method for assigning identifiers that are unique within distance
two. This was then used to transform the algorithm by Hsu and Huang so that
it stabilizes under a distributed adversarial daemon, albeit with an unbounded
stabilization time.

Goddard et al. [6] gave a synchronous variant of Hsu and Huangs algorithm
and showed that it stabilizes in O(n) rounds. While not explicitly proved in the
paper, it can be shown that this algorithm stabilizes in θ(n2) time steps under
an adversarial distributed daemon. Gradinariu and Tixeuil [10] provide a general
scheme to transform an algorithm written for the sequential adversarial daemon
into an algorithm that can cope with the distributed adversarial daemon. Using
this scheme with the Hsu and Huang algorithm yields a time step complexity of
O(∆ ·m), where ∆ denotes the maximum degree of the graph. Manne et al. [14]
later gave an algorithm for finding a maximal matching that stabilizes in O(m)
time step under the distributed adversarial daemon, and O(n) rounds when
using the distributed fair daemon. The aforementioned protocols of [6,10,14]
assume that the nodes are provided with unique identifiers (either globally, or
within a certain distance), as [14] points out that deterministic protocols require
symmetry breaking to deal with the adversarial daemon.

When it comes to improving the 1
2 -approximation induced by the maximal

matching property, only a few works investigate this issue in a self-stabilizing
setting. Ghosh et al. [5] and Blair and Manne [1] presented a framework that
can be used for computing a maximum matching in a tree under a distributed
adversarial daemon using O(n2) moves, while Goddard et al. [8] gave a self-
stabilizing algorithm for computing a 2

3 -approximation in anonymous rings of
length not divisible by three using O(n4) moves, under a sequential adversar-
ial daemon. The polynomial complexity results mainly from the fact that only
strongly constrained topologies are investigated.

A Self-Stabilizing 2
3 -Approximation Algorithm 97

The case of general graphs is more intricate and is the topic of this paper.
It is possible to compute a 2

3 -approximation (or even an optimal solution) for
the maximum matching problem by collecting the entire graph topology on each
node using a self-stabilizing topology update protocol, and then run a deter-
ministic sequential algorithm on each node. This would yield a self-stabilizing
algorithm for the matching problem, but at the expense of having to duplicate
the system graph on each node. This approach is not very practical in most
settings, due to its considerable memory usage.

As far as feasibility is concerned, it would be possible to use a generic scheme
such as [7,2] that prevents nodes at distance k or less of a particular node u to
execute code until further notice from u. Such a scheme would permit to devise
a protocol that essentially tries to find and then to integrate augmenting paths
starting at a node u. Unfortunately, both schemes suffer from severe drawbacks
for this purpose. First, both [7] and [2] make use of a large amount of memory at
each node (typically, an exponential number of states with respect to k). Second,
the complexity of a 2

3 -approximation scheme using [7] would be unbounded.
Third, a scheme based on [2] would require operating under a fair daemon, and
may not stabilize under an adversarial one.

1.3 Our Contribution

In this paper we present the first self-stabilizing algorithm for computing a 2
3 -

approximation to the maximum matching in a general, non-anonymous graph,
that performs under any daemon. Complexity-wise, we show that our algorithm
stabilizes in O(2n+2 ·∆ ·n) time steps under the distributed adversarial daemon,
and in O(n2) rounds under the distributed fair daemon. The memory used at
each node by our protocol is low: we use three pointers to neighbors and one
boolean variables. The rest of the paper is organized as follows. The algorithm
is presented in Section 2. In Section 3 we show the correctness of the algorithm,
while the stabilization time for the algorithm is shown in Section 4. Finally, we
conclude in Section 5.

2 The Algorithm

In this section we present our new algorithm. The algorithm assumes that there
exists an underlying maximal matching algorithm, which has reached a stable
configuration. In Section 4.3 we will explain how the algorithm works when
this algorithm is not in a stable configuration. The new algorithm functions by
identifying augmenting paths of length three, and then rearranging the matching
accordingly. This is done in several steps. First every pair of matched nodes v, w
will try to find unmatched neighbors to which they can rematch. Then one of
v and w will first attempt to match with one of its candidates. Only when the
first node succeeds, will the second node also attempt to match with one of
its candidates. If this also succeeds the rematching is considered complete. The
algorithm will stabilize when there are no such augmenting paths left.

98 F. Manne et al.

2.1 Predicates and Variables

Given an undirected graph G = (V, E) where each node v has a unique identifier.
We assume that these can be ordered, and in the following we do not distinguish
between a node and its identifier. By definition v < null for every node v ∈ V .

The set of neighbors of v in G is denoted by N(v). In the following, we refer
to M ′ as the set of edges in the underlying maximal matching. If v is matched in
M ′, then mv denotes the node that v is matched with in M ′, i.e. (v, mv) ∈ M ′.
Note that if v is unmatched in M ′ then mv = null. For a set of nodes A, we define
µ(A) and σ(A) as the set of matched and unmatched nodes in A, respectively,
in the maximal matching M ′. Since we assume that the underlying maximal
matching is stable, a nodes membership in µ(V) or σ(V) will not change, and
each node v can use the value of mv to determine which set it belongs to.

In order to facilitate the rematching, each node v ∈ V maintains three pointers
and one boolean variable. The pointer pv refers to a neighbor of v that v is trying
to (re)match with. If pv = null then the matching of v has not changed from the
maximal matching (we define pnull = null). Thus two neighboring nodes v, w
are matched if and only if either pv = w and pw = v, or if pv = null, pw = null
and (v, w) ∈ M ′.

For a node v ∈ µ(V), the pointers αv and βv refer to two nodes in σ(N(v)) that
are candidates for a possible rematching with v. Also, sv is a boolean variable
that indicates if v has performed a successful rematching or not.

2.2 Rules and Functions

The following section gives the rules and functions of the algorithm. Each rule
is executed on a node v ∈ V . We divide the rules into two sets, one for nodes in
σ(V) and one for nodes in µ(V). If more than one rule is privileged for a node
in µ(V), the rules are executed in the order presented here. For a set of nodes
A, Unique(A) returns the number of unique elements in the set1, and Lowest(A)
returns the node in A with the lowest identifier, or null if A = ∅.

SingleNode
if (pv = null ∧ Lowest{w ∈ N(v) | pw = v} �= null)∨

pv /∈ (µ(N(v)) ∪ {null}) ∨ (pv �= null ∧ ppv �= v)
then pv := Lowest{w ∈ N(v) | pw = v}

Algorithm 1 - Rule for nodes in σ(V)

Motivation. We now give a brief motivation for each rule in Algorithm 1.
The purpose of the SingleNode rule is to ensure that a node v ∈ σ(V) is

pointing to a neighbor in µ(N(v)) that points back to v. In doing so, v and pv

will be matched. If there exists more than one candidate, the rule will select the
one with the smallest identifier. If no node in µ(N(v)) points to v, the rule ensures
that v points to null, thereby informing v’s neighbors that v is unmatched.
1 Note that Unique(A) = |A|. However for the sake of clarity we use Unique(A).

A Self-Stabilizing 2
3 -Approximation Algorithm 99

Update
if (αv > βv) ∨ (αv, βv /∈ σ(N(v)) ∪ {null})∨

(αv = βv ∧ αv �= null) ∨ pv /∈ (σ(N(v)) ∪ {null}) ∨
((αv, βv) �= BestRematch(v) ∧ (pv = null ∨ ppv /∈ {v, null}))

then (αv, βv) := BestRematch(v)
(pv, sv) := (null, false)

MatchFirst
if (AskFirst(v) �= null) ∧ (pv �= AskFirst(v) ∨ sv �= (ppv = v))
then pv := AskFirst(v)

sv := (ppv = v)

MatchSecond
if (AskSecond(v) �= null) ∧ (smv = true) ∧ (pv �= AskSecond(v))
then pv := AskSecond(v)

ResetMatch
if (AskFirst(v) = AskSecond(v) = null) ∧ ((pv, sv) �= (null, false))
then (pv, sv) := (null, false)

Algorithm 1 - Rules for nodes in µ(V).

BestRematch(v)
a = Lowest {u ∈ σ(N(v)) ∧ (pu = null ∨ pu = v)}
b = Lowest {u ∈ σ(N(v)) \ {a} ∧ (pu = null ∨ pu = v)}
return (a, b)

AskFirst(v)
if αv �= null ∧ αmv �= null ∧ 2 ≤ Unique({αv , βv, αmv , βmv }) ≤ 4

then if αv <αmv∨(αv=αmv∧βv=null)∨(αv =αmv ∧βmv �= null∧v<mv)
then return αv

else return null

AskSecond(v)
if AskFirst(mv) �= null

then return Lowest({αv, βv} \ {αmv })
else return null

Algorithm 1 - Functions

The Update rule is used to ensure that a node v ∈ µ(V) has αv and βv set to
two neighbors that v can try to match with. Note that the rule is executed if any
one of the current α-, β-, or p-value is not pointing to a node in σ(N(v)) or to
null, or if the values of α and β are incorrect, relative to each other. If this is not
the case, the rule is executed only if v is not already involved in a rematch at-
tempt. The values of αv and βv are returned by the BestRematch function, which
returns the two unmatched neighbors in σ(N(v)) with the smallest identifiers.

The MatchFirst rule is executed by a node v ∈ µ(V) in order to initiate
a rematch attempt. The AskFirst function returns the neighbor of v that v
should attempt to rematch with. If this succeeds, then the node mv may become

100 F. Manne et al.

privileged for a MatchSecond move, which employs the AskSecond function in
the same way that MatchFirst uses AskFirst. The AskFirst function has two
consecutive predicates, both which must evaluate to true in order for the calling
node v to become privileged for a MatchFirst move. The first predicate (the
first if statement) checks that v and mv each have at least one possible unique
neighbor to rematch with. The second predicate decides whether v or mv should
initiate the rematch attempt.

If a node v ∈ µ(V) becomes unable to participate in a rematch attempt, it
may be privileged for a ResetMatch move, in order to reset its p- and s-value.

Example. We now give a possible execution of Algorithm 1 under a distributed
adversarial daemon. Figure 1 presents a graph, consisting of the four nodes x, v,
w, and y, where v < w and x < y. Nodes v and w are matched in the underlying
maximal matching. This is shown by the double line joining them. In the figure
we illustrate one node pointing to a neighbor by an arrow (the absence of an
arrow means that the node in question is pointing to null), and if the s-value
is true for a node we show this by a double border. The values of the α- and
β-variables are not shown in the figure.

Figure 1a shows the initial state of the graph. We assume that at this point
(αv, βv) = (x, null) and (αw, βw) = (x, z), where z /∈ N(w). Also note that
sv = false. Observe that both v and w are pointing to x, which implies that
x is privileged for a SingleNode move. Since βw /∈ N(w), w is privileged for
an Update move. In Figure 1b x has executed its SingleNode move, and v has
executed a subsequent MatchFirst move and set sv = true. At this point, w
may execute an Update move, while no other nodes are privileged. This move
will set (pw, sw) = (null, false) and, since w has no neighbors that are eligible
candidates for a rematch attempt, (αw, βw) = (null, null). However, this gives
AskFirst(v) = null, and v can now execute a ResetMatch move, which is followed
by a SingleNode move by x. The result of these moves is shown in Figure 1c.

At this point, both v and w have, combined, at least two unique candidates
for a rematching, namely x and y. Thus both nodes will execute Update moves,
after which AskFirst(w) = x (which implies that AskFirst(v) = null), and w may
execute a MatchFirst move, and point to x, as seen in Figure 1d. Following this

y v w

x

y v w

x

y v w

x

a b c

y v w

x

y v w

x

y v w

x

d e f

Fig. 1. Execution example of Algorithm 1

A Self-Stabilizing 2
3 -Approximation Algorithm 101

move, x executes a SingleNode move and points to w after which w will set sw =
true through a MatchFirst move (Figure 1e). Since w has successfully established
a rematching, v may now attempt the same by executing a MatchSecond move
and point to y. This will cause y to point back to v (note however that v is not
privileged to set sv = true) (Figure 1f). At this point the system has reached
a stable configuration, and the augmenting path that existed in Figure 1a has
been identified and used to improve the matching.

3 Correct Stabilization

In this section we show that when Algorithm 1 is stable it has computed a
2
3 -approximation to the maximum cardinality matching problem. Due to page
constraints we omit some of the proofs.

We first need the following definition.

Definition 1. A node v ∈ µ(V) is a pioneer if and only if AskFirst(v) �= null.

We define the short hand notation

R(v) ≡ αv �= null ∧ αmv �= null ∧ 2 ≤ Unique({αv, βv, αmv , βmv}) ≤ 4

Thus R(v) is equal to the outcome of the first if-statement of the AskFirst
function. R(v) = true states that v and mw each have at least one candidate
for a rematch, and together they have at least two unique candidates. Note that
R(v) = R(mv). We now make the following observation about Algorithm 1.

Lemma 1. For a node v ∈ µ(V) in a stable configuration where R(v) = true
then either AskFirst(v) �= null or AskFirst(mv) �= null.

Next we show the following connection between AskFirst(v) and AskSecond(mv).

Lemma 2. If v ∈ µ(V) then AskFirst(v) �= null if and only if AskSecond(mv)
�= null.

We now proceed to show that in a stable configuration whenever a node v has
pv �= null then we must have pv ∈ N(v) and ppv = v. To do so we look at three
different cases. The first case is v ∈ σ(V). For v ∈ µ(V) we distinguish if v is a
pioneer or not.

Lemma 3. Let v ∈ σ(V) in a stable configuration. Then pv �= null implies that
pv ∈ µ(N(v)) and that ppv = v.

To show that the equivalent of Lemma 3 also holds for v ∈ µ(V) we first need
to show the following two intermediate results.

Lemma 4. Let v ∈ µ(V). Then we cannot have pv �= null, ppv �= v, and
(αv, βv) �= BestRematch(v) in a stable configuration.

Corollary 1. Let v ∈ µ(V). Then we cannot have pv �= null, ppv �= v, and
pv ∈ {αv, βv} in a stable configuration.

102 F. Manne et al.

We can now show that the equivalent of Lemma 3 also holds for v ∈ µ(V).

Lemma 5. Let v ∈ µ(V) in a stable configuration. If AskFirst(v) �= null then
(i) pv �= null, (ii) pv ∈ σ(N(v)), (iii) ppv = v, and (iv) sv = true.

Lemma 6. Let v ∈ µ(V) in a stable configuration. If AskSecond(v) �= null then
(i) pv �= null, (ii) pv ∈ σ(N(v)), and (iii) ppv = v.

We have now established for any node v ∈ V that if pv �= null then ppv = v.
We next show that if v ∈ µ(V) is matched to a node other than mv in a stable
configuration, then mv is also matched to a node other than v.

Lemma 7. If v ∈ µ(V) in stable configuration then pv �= null ⇔ pmv �= null.

Next we show that when Algorithm 1 is stable the original matching M ′ and the
p values define an unambiguous matching. Recall that two neighboring nodes v
and w are matched if either (v, w) ∈ M ′, pv = null, and pw = null or if pv = w
and pw = v. Similarly, a node v is unmatched if v ∈ σ(V) and if pv = null.

Lemma 8. In a stable configuration every node is either matched or unmatched.

We can now finally show that a stable configuration of Algorithm 1 is a 2
3 -

approximation to the maximum cardinality matching problem.

Theorem 1. A stable configuration of Algorithm 1 is a 2
3 -approximation to the

maximum matching problem.

Proof. We first note from Lemma 8 that a stable matching is well defined, mean-
ing that every node is either matched or unmatched. Next, from Hopcroft and
Karp [12], we have that for a graph G with a matching M , if there does not
exists an augmenting path of length three or less then M is a 2

3 -approximation
to the maximum matching in G.

From the definition of an augmenting path it follows that any node in µ(V)
will also be a member of the final matching. Consequently, an augmenting path in
a stable configuration must both start and end with nodes from σ(V). Due to the
underlying maximal matching we know that there does not exist an augmenting
path in M ′ of length one, i.e. two unmatched nodes cannot be neighbors. It
is therefore sufficient to show that there does not exist an augmenting path
x, v, w, y in a stable configuration where x and y are distinct unmatched nodes
and v and w are matched.

Assume that such a path exists in a stable configuration, then v, w ∈ µ(V),
otherwise two adjacent nodes would be in σ(V). Since v and w are matched in
the final matching then either (i) pv = w and pw = v or (ii) pv = pw = null and
(v, w) ∈ M ′.

Note that in Case (i) pv ∈ µ(V) (and similarly for pw), which would trigger
an Update move, contradicting that the configuration is stable.

For Case (ii) first note that since x and y are unmatched, px = py = null.
Thus, if Unique({αv, βv}) = 0 then v is privileged for an Update move (and
similarly for w). However, if both {αv, βv} �= ∅ and {αw, βw} �= ∅ we see from
Lemma 1 that either AskFirst(v) �= null or AskSecond(v) �= null. From lemmas
5 and 6 this implies that the configuration is not stable. �

A Self-Stabilizing 2
3 -Approximation Algorithm 103

4 Stabilization Time

We now progress to bound the time needed for the algorithm to stabilize, both
for the distributed adversarial and for the distributed fair daemon. For these
analysis we assume that the underlying maximal matching is stable. We address
the interaction between the maximal matching and Algorithm 1 in Section 4.3.
Note that due to page constraints we omit some of the proofs.

4.1 Distributed Adversarial Daemon

In this section we bound the number of time steps needed for Algorithm 1 to
stabilize with the distributed adversarial daemon. Recall that one time step is
one step in the execution during which at least one node privileged at the start
of the time step has executed exactly one move.

We say that a node v ∈ µ(V) has executed a forced Update move if an Update
move was executed due to one of the following conditions: (i) αv > βv, (ii)
αv, βv /∈ σ(N(v)), or (iii) αv = βv while αv �= null. Since neither of these states
can occur as a result of an executed move they must occur as a result of incorrect
initial values. Thus, each node v ∈ µ(V) can execute at most one forced Update
move, and this will be the first move that v executes, if it was initially privileged
to do so. We now make the following observation about Algorithm 1.

Lemma 9. Let v ∈ µ(V). Then AskFirst(v) �= null if and only AskSecond(v)
= null.

Lemma 10. For every nodes v ∈ µ(V), if neither v nor mv is privileged for a
forced Update move and AskFirst(v) �= null then AskFirst(v) < AskSecond(mv).

The following result shows that once a successful rematching has been estab-
lished, then if the involved nodes in µ(V) are not privileged for a forced Update
move, the involved nodes in σ(V) will not move again.

Lemma 11. Given nodes v, w, x, and y where (v, w) ∈ M ′, x ∈ σ(N(v)) and
y ∈ σ(N(w)). If pv = x, pw = y, px = v, py = w, AskFirst(v) = x, and
AskSecond(w) = y, then if neither v nor w is privileged for a forced Update
move, neither x nor y will move again.

Next we show that the nodes in µ(V) will stabilize rapidly if no node in σ(V)
executes a move.

Lemma 12. A node v ∈ µ(V) can make O(1) moves between each time step
that includes a move by a node in σ(N(v))

Proof. Let v ∈ µ(V) and consider a maximal sequence S of time steps where
no node in σ(N(v)) makes a move. Let a, b be the initial values of αv, βv and
a′, b′ their values after the first (if any) Update move by v in S. Then from
the BestRematch function we have that a′, b′ ∈ σ(N(v)) ∪ {null}. Since the
values of αv and βv are only changed by the Update rule they will remain in

104 F. Manne et al.

σ(N(v)) ∪ {null} for the duration of S while (αv, βv) = BestRematch(v) also
remains true.

The Update rule sets pv = null and any value subsequently assigned to pv must
be taken from the set {αv, βv, null}. It follows that pv ∈ σ(N(v)) ∪ {null} will
remain true throughout S after the first Update move. From these observations
it follows that there can at most be one Update move in S.

The remaining rules can only be triggered by changes in the values of αv, βv,
αmv , βmv , pv, and ppv . From the above observation we know that there can only
be four configurations of αv, βv, αmv , βmv in S since each α, β pair can only
change value once in S. It follows from Lemma 9 that for fixed αv, βv, αmv , βmv

values we must have one of the following configurations: (i) AskFirst(v) �=
null and AskSecond(v) = null, (ii) AskFirst(v) = null and AskSecond(v) �=
null, or (iii) AskFirst(v) = null and AskSecond(v) = null. Thus only one of
the rules MatchFirst, MatchSecond, and ResetMatch can be privileged before
at least one of αv, βv, αmv , βmv , pv changes value. For each of these rules it is
straightforward to see that the assignment to pv or sv cannot make the same rule
become privileged again. The only assignment that can cause a new move is if
ppv changes value which could result in MatchFirst to be executed consecutively
more than once. But if pv ∈ σ(N(v)) then ppv will not change in S. Also, if
pv = null then ppv cannot change and if pv �∈ σ(N(v)) ∪ {null} then the next
move executed by v will be an Update move. It follows that v can at most
execute one move between each time that at least one of αv, βv, αmv , βmv , pv

changes value in S and the result follows. �

In order to reason about SingleNode moves and the cause of these, we use the
following definitions: Given a node x ∈ σ(V) and a node v ∈ µ(V), we refer to
x as being asked first in a rematch attempt if AskFirst(v) = x and pv is set to x.
Similarly, we refer to x as being asked second if AskSecond(v) = x and pv is set
to x. We say that x accepts the matching attempt if following either of the above
cases it sets px = v. If x sets px �= v then x rejects the matching attempt by v.

Lemma 13. The node y with the highest identifier in σ(V) can execute moves
during at most O(δy) time steps where δy is the degree of y.

We now bound the total number of moves executed by nodes in σ(V).

Lemma 14. Each node in σ(V) can execute moves during at most O(2n+2 ·∆)
time steps, where ∆ is the maximum degree in the graph.

Proof. Order the nodes in σ(V) as x0, x1, ..., xt−1 where t = |σ(V)| such that
x0 > x1 > ... > xt. We denote the number of moves that a node xi can execute
as L(i), and show by induction that L(i) ≤

∑i−1
e=0 L(e) + O(∆).

The base case is i = 0. It was shown in Lemma 13 that the single node with the
highest identifier in σ(V) can execute at most O(∆) moves. Thus L(0) = O(∆).

For the induction step we assume that the bound holds for every node x0, x1,
..., xi−1 and prove that this implies that it also holds for xi. We show this by
considering the instances where xi is asked second separately from where xi is
asked first.

A Self-Stabilizing 2
3 -Approximation Algorithm 105

The case where xi is asked second is similar to the base case, and will thus
result in O(∆) moves.

For the case where xi is asked first by some node v we first observe that if v
is initially privileged for a forced Update move, then following this move xi may
become privileged to set pxi �= v. However, if xi is again asked first by v, we
know that there exists a node w = mv where k = AskSecond(w) and k �= null.
We now consider two cases: (i) k ∈ σ(N(w)) or (ii) k /∈ σ(N(w)).

In Case (i) it follows that there exists a node xj ∈ σ(V) such that xj = k. If
xj < xi then αw ≥ βw, which must be due to an incorrect initialization. Thus, w
is privileged to execute a forced Update move, after which xi may again become
privileged. Subsequently, if xi is again asked first by v, then Case (i) is again
true, but now with xj > xi.

We will now show that xi may only become privileged again due to moves
made by xj . At this point, both v and w must have executed any forced Update
move, if they were privileged to do so. Obviously xi will not become privileged
while pv = xi, and from the predicate of the Update move we see that v will
not become privileged for an Update move while pxi = v. From the ResetMatch
predicate it follows that v may only become privileged if AskSecond(w) = null,
which implies that xj has made a move. Furthermore, from Lemma 11 we know
that if xj accepts the rematch attempt from w, xi will not move again. Hence,
when k ∈ σ(N(w)), the number of moves by xi is bounded by

∑i−1
k=0 L(k).

For Case (ii) note first that k /∈ σ(N(w)) can only occur once initially due to
incorrect initialization. In this case w is privileged for an Update move, and xi

may only become privileged again following this move. Since xi has at most ∆
neighbors, it follows that Case (ii) may at most cause O(∆) additional moves
for xi. Combining the case where xi is asked second with (i) and (ii) we get
L(i) ≤ L(i − 1) + L(i − 2) + ... + L(0) + O(∆) ≤ 2i+2 · O(∆) and the result
follows. �

Based on lemmas 12 and 14 we get the following bound on the step complexity
of Algorithm 1 when using a distributed adversarial daemon.

Theorem 2. Algorithm 1 will stabilize in O(2n+2 · ∆ · n) time steps.

4.2 Distributed Fair Daemon

In this section we consider the complexity of Algorithm 1 when run with a
distributed fair daemon. Due to page constraints we only give an outline of the
analysis.

We first note that following the first round, for any node z ∈ V pz ∈ N(z) ∪
{null}, and additionally, for any node v ∈ µ(V), if AskFirst(v) �= null then
αv, βv ∈ σ(N(v)) and AskFirst(v) < AskSecond(mv). Consequently, if there
exists an augmenting path of length three in the graph, then within O(1) rounds,
at least one node v ∈ µ(V) must have pv = x �= null (possibly as a result of
a MatchFirst move), where x ∈ σ(V). Thus, within the end of the subsequent
round, px = w �= null (note that w may be equal to v). If x was asked second by

106 F. Manne et al.

w we know that a rematch attempt has succeeded. If x was asked first, we know
that there exists a node y where x < y that is asked second by mw. Thus we can
repeat the above argument, creating a chain of nodes in σ(V) with increasing
identifiers that must eventually lead to two edges joining the matching. Observe
that the length of this chain is at most O(n).

Thus we see that after at most O(n) rounds at least two edges must join the
matching, and since the cardinality of the matching is at most O(n), we get the
following result.

Theorem 3. Algorithm 1 will stabilize in O(n2) rounds under a distributed fair
daemon.

4.3 Interaction with the Maximal Matching

While the previous two sections show that Algorithm 1 stabilizes when the under-
lying maximal matching is stable, we need to consider how Algorithm 1 functions
on a non-stable maximal matching. We assume a maximal matching algorithm
such as the one given by Manne et al. [14] and denote this as Algorithm 0. This
algorithm has the property that if an edge becomes part of the matching then
it will remain so for the remainder of the execution. We enforce that no rule
in Algorithm 1 will become privileged on a node z if a rule in Algorithm 0 is
privileged for the same node. Furthermore, if a node z in Algorithm 0 has made
a bid to establish a new matching, then no rule in Algorithm 1 will become priv-
ileged for z until the attempt has either succeeded or failed (note that z is not
necessarily privileged). This may for example occur if z is attempting to match
with a neighbor, but has not yet received a response (for details of Algorithm 0,
see [14]). Finally, we assume that Algorithm 0 does not use any variables from
Algorithm 1.

Given the above, then at any point during the execution of the combined
algorithm, there exists a (possibly empty or disconnected) subgraph of G where
Algorithm 0 is stable. Since the non-stable nodes that border on this subgraph
will not become privileged for Algorithm 1, it follows that any execution of
Algorithm 1 will stabilize on G. Due to page restraints we omit further details.

The algorithm given in [14] has a complexity of O(m) and O(n) for the dis-
tributed adversarial and distributed fair daemon respectively, and thus the com-
bined complexity of algorithms 0 and 1 is O(2n+2 · ∆ · n ·m) for the distributed
adversarial daemon and O(n2) for the distributed fair daemon.

5 Conclusion

We have presented the first self-stabilizing algorithm for computing a 2
3 - approx-

imation to the maximum cardinality matching problem in a general graph. The
algorithm uses only constant number of variables for each node, and stabilizes
in O(2n+2 · ∆ · n) time steps and O(n2) rounds for the distributed adversarial
and distributed fair daemon, respectively, when assuming a stable underlying
maximal matching.

A Self-Stabilizing 2
3 -Approximation Algorithm 107

It is worth noting that it would have been possible to design an algorithm
such that through the use of identifiers, the eventual solution is deterministic,
i.e. unaffected by the initial state of the graph and the order in which rules are
executed. This algorithm would conceivably be both shorter and have a better
complexity than the one presented here, but at the cost of robustness. That is,
in the presented algorithm, adding or removing a node in a stable solution would
have little or no effect on the majority of the graph, while the hypothetical strict
algorithm would possibly have to redo the entire stabilization process.

A possible area for future research is to investigate how better approximation
ratios than 2

3 could be achieved with complexity efficient self-stabilizing algo-
rithms. Furthermore, it would be of interest to see if the algorithm given here
could be generalized for weighted instances of the matching problem, or if the
stabilization time can be improved.

References

1. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
ICDCS 2003: Proceedings of the 23rd International Conference on Distributed
Computing Systems, Washington, DC, USA, pp. 20–26. IEEE Computer Society
Press, Los Alamitos (2003)

2. Danturi, P., Nesterenko, M., Tixeuil, S.: Self-stabilizing philosophers with generic
conflicts. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
214–230. Springer, Heidelberg (2006)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
5. Ghosh, S., Gupta, A., Karaata, M.H., Pemmaraju, S.V.: Self-stabilizing dynamic

programming algorithms on trees. In: Proceedings of the Second Workshop on
Self-Stabilizing Systems (WSSS 1995), Las Vegas, pp. 11.1–11.15 (1995)

6. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-
tocols for maximal matching and maximal independent sets for ad hoc networks.
In: IPDPS 2003: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, Washington, DC, USA, p. 162.2. IEEE Computer Society
Press, Los Alamitos (2003)

7. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance-k knowledge
in self-stabilizing algorithms. Theor. Comput. Sci. 399(1-2), 118–127 (2008)

8. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm
for 1-maximal matching in trees. In: PDPTA 2006: Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications &
Conference on Real-Time Computing Systems and Applications, vol. 2, pp. 797–
803. CSREA Press (2006)

9. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under
unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.)
Euro-Par 2001, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

10. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fair-
ness assumption. In: ICDCS 2007: Proceedings of the International Conference
on Distributed Computing Systems. IEEE Computer Society Press, Los Alamitos
(2007)

108 F. Manne et al.

11. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
O(m). Inf. Process. Lett. 80(5), 221–223 (2001)

12. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

13. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

14. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS,
vol. 4474, pp. 96–108. Springer, Heidelberg (2007)

15. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6),
271–272 (1994)

Self-Stabilizing Leader Election in Optimal Space

Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula

School of Computer Science, University of Nevada Las Vegas

Abstract. A silent self-stabilizing asynchronous distributed algorithm,
SSLE, for the leader election problem, in a connected unoriented network
with unique IDs, is given. SSLE uses O(log n) space per process and sta-
bilizes in O(n) rounds, where n is the number of processes in the network.

Keywords: Distributed algorithm, leader election, self-stabilization.

1 Introduction

In this paper, we give a self-stabilizing silent asynchronous distributed algorithm
for the leader election problem, where all process in a network must agree on
which one of them is the leader. A self-stabilizing system, regardless of the
initial states of the processes and initial messages in the links, is guaranteed
to converge to the intended behavior in finite time; the algorithm is also called
silent if eventually all execution halts [4,5].

1.1 Related Work

Arora and Gouda [2] present a silent leader election algorithm in the shared mem-
ory model. Their algorithm requires O(N) rounds and O(log N) space, where N
is a given upper bound on n, the size of the network. Dolev and Herman [6]
give a non-silent leader election algorithm in the shared memory model. This
algorithm takes O(diam) rounds, where diam is the diameter of the network,
and uses O(N log N) space. Awerbuch et al.[3] solve the leader election problem
in the message passing model. Their algorithm takes O(diam) rounds and uses
O(log D log N) space, where D is a given upper bound on the diameter.

Afek and Bremler [1] introduce the concept of power supply which they use
to construct an algorithm for the leader election problem in the message passing
model. Their algorithm takes O(n) time and uses O(log n) bits per process. Our
algorithm SSLE is partially inspired by Afek and Bremler’s algorithm.

1.2 Contributions

We present a self-stabilizing algorithm, SSLE, for the leader election algorithm,
in the composite atomicity model of computation. The space complexity of our
algorithm is O(log n) bits per process, and the time complexity is O(n). SSLE
does not require knowledge of any upper bounds on n or diam .

More precisely. The time complexity of SSLE is actually O(simp), where simp
is defined to be the length of the longest simple path in the network; hence
simp ≤ n − 1. Afek and Bremler’s algorithm [1] also takes O(simp) rounds.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 109–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

110 A.K. Datta, L.L. Larmore, and P. Vemula

1.3 Outline of Paper

In Section 2, we describe our model of computation. In Section 3, we give our
self-stabilizing algorithm, SSLE. In Section 4, we give a sketch of the proof of
the correctness and time complexity of SSLE. Section 5 concludes the paper.

2 Preliminaries

We are given a connected undirected network, G = (V, E) of |V | = n processes,
where n ≥ 2. Each process P has a unique ID, P.id , of ID type, which could be any
ordered type, but which we take to be non-negative integer. We assume the shared
memorymodel of computation introduced in [4]. In thismodel, a processP can read
its own registers and those of its neighbors, but can write only to its own registers.

The state of a process is defined by the values of its registers. A configuration
of the network is a function from processes to states; if γ is the current config-
uration, then γ(P) is the current state of each process P . An execution of A is
a sequence of states e = γ0 �→ γ1 �→ . . . �→ γi . . ., where γi �→ γi+1 means that it
is possible for the network to change from configuration γi to configuration γi+1
in one step. We say that an execution is maximal if it is infinite, or if it ends at
a sink , i.e., a configuration from which no execution is possible.

The program of each process consists of a finite set of actions of the following
form: < label >:: < guard > −→ < statement >. The guard of an action in the
program of a process P is a Boolean expression involving the registers of P and its
neighbors. The statement of an action of P updates one or more variables of P . An
action can be executed only if it is enabled , i.e., its guard evaluates to true. A pro-
cess is said to be enabled if at least one of its actions is enabled. A step γi �→ γi+1
consists of one or more enabled processes executing an action. The evaluations of
all guards and executions of all statements of those actions are presumed to take
place in one atomic step; this model is called composite atomicity [5].

We assume that each transition from a configuration to another is driven by
a scheduler , also called a daemon. If one or more processes are enabled, the
daemon selects at least one of these enabled processes to execute an action. We
assume that the daemon is also weakly fair , meaning that, if a process P is
continuously enabled, P must eventually be selected by the daemon.

We say that a process P is neutralized in the computation step γi �→ γi+1
if P is enabled in γi and not enabled in γi+1, but does not execute any action
between these two configurations. The neutralization of a process represents the
following situation: at least one neighbor of P changes its state between γi and
γi+1, and this change effectively makes the guard of all actions of P false.

We use the notion of round [5], which captures the speed of the slowest process
in an execution. We say that a finite execution = γi �→ γi+1 �→ . . . �→ γj is a
round if the following two conditions hold:

1. Every process P that is enabled at γi either executes or becomes neutralized
during some step of .

2. The execution γi �→ . . . �→ γj−1 does not satisfy condition 1.

Self-Stabilizing Leader Election in Optimal Space 111

We define the round complexity of an execution to be the number of disjoint
rounds in the execution, possibly plus 1 if there are some steps left over.

2.1 Self-Stabilization and Silence

The concept of self-stabilization was introduced by Dijkstra [4]. Informally, we say
that distributed algorithm is self-stabilizing if, starting from a completely arbi-
trary configuration, the network will eventually reach a legitimate configuration.

More formally, we assume that we are given a legitimacy predicate LA on
configurations. Let LA be the set of all legitimate configurations, i.e., configu-
rations which satisfy LA. Then we define A to be self-stabilizing if the following
two conditions hold:

1. (Convergence) Every maximal execution contains some member of LA.
2. (Closure) If an execution e begins at a member of LA, then all configurations

of e are members of LA.

We say that A is silent if every execution is finite. In other words, starting
from an arbitrary configuration, the network will eventually reach a configuration
where no process is enabled.

3 The Leader Election Algorithm SSLE

In this section, we present a silent self-stabilizing algorithm, SSLE, that elects
the process of minimum ID in the network to be the leader, within O(n) rounds
of arbitrary initialization, using O(log n) space per process.

3.1 A Simplified Algorithm

We first describe a simplified algorithm for the leader election problem. let Leader
be the process of smallest ID in the network. Let P.leader be a process P ’s current
estimate of the ID of Leader and P.level be P ’s current estimate of its distance
to Leader .

For convenience, write P.key = (P.leader , P.level), the key of P . Keys are
ordered lexically, i.e., P.key < Q.key if P.leader < Q.leader , or P.leader =
Q.leader and P.level = Q.level . For any P , let P.self = (P.id , 0), which we
call the self key of P . Succ(i, j) = (i, j + 1) for any ordered pair (i, j). Let
Min Key Nbr(P) to be the minimum value of Q.key among all Q ∈ NP , where
NP is the set of neighbors of P .

When the simplified algorithm converges, the following conditions will hold:

C1. P.key ≤ (P.id , 0)

C2. If P.key > Min Key Nbr(P),
then P.key = Succ(Min Key Nbr(P)),
else P.key = (P.id , 0).

112 A.K. Datta, L.L. Larmore, and P. Vemula

It follows easily that, if these conditions hold, P.leader = Leader .id for all P ,
and P.level will be the distance from P to Leader , and hence each process is
connected to the Leader by the shortest possible path.

Our simplified algorithm has only two actions, as follows:

A1. If (P.key > P.self) ∨ (P.key ≤ Min Key Nbr(P)),
then P.key ← P.self .

A2. If Succ(Min Key Nbr(P)) < P.key ≤ P.self ,
then P.key ← Succ(Min Key Nbr(P)).

If, initially, P.leader ≥ Leader .id for all P , the simplified algorithm converges
within diam +1 rounds. In this case, Leader .self = (Leader .id , 0) is the smallest
possible key. After one round, Leader .key = Leader .self , and after t + 1 rounds,
all processes within distance t of Leader have their final keys.

3.2 The Problem of Fictitious Leaders

The simplified algorithm in Section 3.1 is not self-stabilizing, since because of ar-
bitrary initialization, P.leader could be initialized to a value of ID type which is
not the ID of any process in the network. In this case we say that P has a fictitious
leader . A fictitious leader that is greater than Leader .id is not a problem, but if
a fictitious leader is less than Leader .id , the network might never get rid of that
fictitious ID. We illustrate this possibility with a simple example.

Consider a 2-process network with processes, P2 and P3, where Pi.id = i,
and where initially P2.key = (1, 0) and P3.key = P3.self = (3, 0). Suppose each
process executes one action during each round. After one round, P2.key = (2, 0)
and P3.key = (1, 1). After another round, P2.key = (1, 2) and P3.key = (3, 0).
After a total of 2t rounds, P2.key = (1, 2t), and P3.key = (3, 0). Thus, the
algorithm never stabilizes.

Using a known upper bound on the diameter. The problem of fictitious leaders
can be solved if an upper bound, D, on the diameter of the network is given.
Simply replace A1 by A1′:

A1′. If (P.key > P.self) ∨ (P.key ≤ Min Key Nbr(P)) ∨ (P.level ≥ D),
then P.key ← P.self .

By induction, it can be shown that if t rounds have elapsed since initialization,
and if a process P has a fictitious leader, then P.level ≥ t. Thus, after D + 1
rounds have elapsed, there will be no fictitious leader in the network. After at
most diam additional rounds, the algorithm converges. This method is similar
to the Arora and Gouda’s algorithm [2].

3.3 Formal Definition of SSLE

SSLE solves the fictitious leader problem by introducing color waves .

Self-Stabilizing Leader Election in Optimal Space 113

In SSLE, each process P has the following variables.

• P.parent ∈ NP ∪ {P}, the parent of P .

• P.key = (P.leader , P.level), the key of P , where P.leader is of ID type, and
P.level is a non-negative integer.

• P.color ∈ {0, 1}.

• P.done, Boolean.

We also define the following functions on keys:

• Succ(i, j) = (i, j + 1)

• (i, j) < (k, �) ≡ (i < k) ∨ ((i = k) ∧ (j < �)), i.e., lexical order on keys.

Each process P has the following functions, which can be evaluated by P .

• Is True Root(P) ≡ (P.parent = P) ∧ (P.key = (P.id , 0)), P is a true root .

• Is True Chld(P) ≡ (P.key = Succ(P.parent .key)) ∧ (P.leader < P.id), P is a
true child .

• Is False Root(P) ≡ ¬Is True Root(P)∧¬Is True Chld(P), P is a false root .

• Is Root(P) ≡ Is True Root(P) ∨ Is False Root(P), P is a root .

• Min Key Nbr(P) = min {Q.id : Q ∈ NP }, the minimum key of any neighbor.

• Can Improve(P) ≡ Succ(Min Key Nbr(P)) < P.key , there is a neighbor of
P that would be a better parent than its current parent.

• Can Attach(P) ≡ ∃Q ∈ NP : (Q.key = Min Key Nbr(P)) ∧ (Q.color = 1),
there is a process that P can attach to that is better than its current parent.

• Best Nbr(P) = a neighbor Q ∈ NP such that Q.key = Min Key Nbr(P) and
Q.color = 1. In case there is more than one choice, pick the one of lowest ID. In
case there is none, Best Nbr(P) is undefined.

• Chldrn(P) = {Q ∈ NP : (Q.parent = P) ∧ Is True Chld(Q)}, the true chil-
dren of P .

• False Chldrn(P) = {Q ∈ NP : (Q.parent = P) ∧ (Is False Root(Q))}, the
false children of P .

• Done(P) ≡ (∀Q ∈ NP : Q.key ≤ Succ(P.key)) ∧
(∀Q ∈ Chldrn(P) : Q.done)

We give the table of actions of SSLE in Table 1. The name of each action
is listed in the first column, along with its priority number. The guard of each
action is the conjunction of up to four clauses , listed in the third column. In

114 A.K. Datta, L.L. Larmore, and P. Vemula

order for an action to be enabled, its guard must be true, and no action with a
lower priority number may be enabled.

We refer to Actions A2 and A3 as reset actions . We refer to Actions A1, A2,
and A3 as structure actions. We refer to Actions A4 and A5 as color actions .

Table 1. Actions of SSLE

A1 Attach Is True Root(P) −→ P.parent
priority 1 Can Attach(P) ← Best Nbr(P)

False Chldrn(P) = ∅ P.key
← Succ(Best Nbr(P))

P.color ← 0
P.done ← Done(P)

A2 Reset Is False Root(P) −→ P.key ← (P.id , 0)
priority 1 False P.parent ← P

Root P.color ← 0
P.done ← Done(P)

A3 Detach Is True Chld(P) −→ P.key ← (P.id , 0)
priority 1 True Can Improve(P) P.parent ← P

Child P.color ← 0
P.done ← Done(P)

A4 Color 1 P.color = 0 −→ P.color ← 1
priority 2 P.parent .color = 0 P.done ← Done(P)

∀Q ∈ Chldrn(P) : Q.color = 1
¬Is True Root(P) ∨ ¬P.done

A5 Color 0 P.color = 1 −→ P.color ← 0
priority 2 P.parent .color = 1 P.done ← Done(P)

∀Q ∈ Chldrn(P) : Q.color = 0
¬Is True Root(P) ∨ ¬P.done
∀Q ∈ NP : Q.key ≤ Succ(P.key)

A6 Update P.done �≡ Done(P) −→ P.done ← Done(P)
priority 3 Done

3.4 Overview of SSLE

The correct value of P.key , and the value it will achieve eventually if the algo-
rithm is correct, is P.final key = (Leader .id ,Level(P)), where Level(P) is the
distance from P to Leader . If P.key < P.final key , we say that P is inferior .
We define an inferior tree to be a tree whose root is inferior. All inferior pro-
cesses belong to inferior trees, and all inferior trees are false trees. The relations
between the various sets of processes and trees are indicated in Figure 1.

As the algorithm progresses, processes leave trees and join other trees. When
SSLE has stabilized, all processes belong to one true tree rooted at Leader . A

Self-Stabilizing Leader Election in Optimal Space 115

true childrentrue roots

processes
 inferior

false
childrenroots

false

 trees
inferior

true trees

false trees

Fig. 1. Relations Among Classes of Processes and Trees

process can easily detect that it is a false root, but a process that is not a root
has no way of knowing whether it is a member of a false tree. The problem we
face is that an inferior tree can continue to recruit new leaves, even as it deletes
itself starting from the root, and might never disappear.

3.5 Color Waves and Energy

Afek and Bremler solve the fictitious leader problem in their message-passing
leader election algorithm [1], by using the concept of “power supply,” the idea
being that a true root continuously supplies “power” to its tree, allowing it to
recruit new processes, whereas false trees will eventually run out of “power” and
be unable to recruit. In this paper, we introduce a similar concept. Each process
P has a color , either 0 or 1. Only processes of color 1 are allowed to recruit new
members of the tree, and the new recruits always have color 0. In addition, we
allow a process P to change color if P.parent .color = P.color , and if all its true
children have the opposite color. Processes change colors in convergecast waves
starting from the leaves of the trees.

A true root “absorbs” the color waves by alternating its own color, but a
false root cannot change color. Thus, in a false tree, color waves, which cannot
pass each other, eventually cause color deadlock , preventing further growth of
the tree.

At the same time a false root is enabled to reset (execute Action A2). Thus,
a false tree shrinks every round, but is limited in its growth. Deletion of a false
root can break the remainder of its tree into multiple smaller false trees, all with
the same leader.

In order to prove that, eventually, all inferior trees will be eliminated, we
define the energy of a tree, and show that the maximum energy of any false tree
decreases every round. For any process P , let

β(P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if Is Root(P) ∧ (P.color = 0)
2 if Is Root(P) ∧ (P.color = 1)
β(P.parent) if Is True Chld (P) ∧ (P.color = 0) ∧

(P.parent .color = 1)
β(P.parent) + 2 otherwise

We define the energy of a tree to be the maximum value of β(P) for any
process P in that tree, and we define B to be the maximum value of the energy

116 A.K. Datta, L.L. Larmore, and P. Vemula

of any inferior tree. The energy of a tree can increase in only one way, and that is
by its root executing a color action. Thus a true tree can increase its energy, but
a false tree, such as an inferior tree, although it can recruit members, cannot
increase its energy. Furthermore, the energy of any tree decreases if its root
leaves the tree. Thus, since every false root is enabled to execute Action A2, its
energy decreases every round. Finally, since no new inferior trees can be created,
except by fragmentation of an existing inferior tree, the value of B decreases
every round.

Since the energy of any tree cannot exceed 2simp +2, the time required for all
inferior trees to be deleted is O(simp). Once there are no more inferior processes
in the network, SSLE will stabilize within O(simp) additional rounds. There will
then be just one tree T , rooted at Leader , which will be a breadth-first-search
spanning tree of the network.

After it has stabilized, SSLE may not yet be silent, since Actions A4, A5, and A6
may continue to execute. In a convergecast wave starting at the leaves of T , P.done
will be set to true for all P . When Leader .done holds, it has received acknowl-
edgment from all other processes that it has been elected leader, and it ceases to
change color, because of the fourth clause of the guard of each color action. Within
O(diam) additional rounds, all other nodes stop changing color as well.

Due to arbitrary initialization, Leader .done could be true even if the algorithm
is not finished. In this case, within O(diam) time, Leader .done will be set to false,
and SSLE will proceed normally.

3.6 Example Execution

In Figure 2, we show the sequence of configurations for an execution of SSLE
in one example, where the network consists of six processes in a chain. The IDs
of the processes are shown across the top of the figure. Each row shows one
configuration. Each process is represented by a box containing three numbers.
The leftmost number in the box representing a process P is P.leader , the middle
number is P.level , and the rightmost number is P.color . Arrows represent parent
pointers. If no arrow is shown from the box representing P , then P.parent = P .
In this example, Leader is the fifth node in the chain, and Leader .id = 2. We
assume that P.done is initially false for all P .

In our example computation, the initial configuration contains one inferior
tree consisting of the first four processes. The other two processes form singleton
trees. For simplicity, we will assume that all enabled processes are selected at
each step; thus, each round consists of one step. When a process executes an
action, the name of that action is shown. For example, during the eighth step,
the first process, whose ID is 6, executes Action A1 to join the tree whose
leader is 4; changing its key from (6, 0) to (4, 2) and changing its color from 1
to 0. We do not show Action A6 in the figure, nor do we show the values of
Pi.done.

As the inferior tree grows to the right, it captures the rightmost two nodes,
but also shrinks on the left as its processes executes A2. After six steps, the
inferior tree is gone. The tree rooted at Leader then grows until it captures all

Self-Stabilizing Leader Election in Optimal Space 117

t

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

4

4

6

6

6

6

2

1

6

6

6

6

6

6

6

4

0

0

1

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

1

0

1

0

0

1

1

4

4

7

7

2

2

2

2

1

1

1

4

4

4

4

4

4

0

0

1

0

1

1

0

0

1

4

2

2

2

2

2

2

2

0

0

0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

0

1

1

0

0

1

1

0

2

2

2

2

2

2

2

2

1

1

0

0

1

0

1

1

0

2

2

1

1

1

2

2

2

2

0

0

0

0

1

0

0

0

0

3

2

2

3

3

1

3

2

2

0

0

0

0

0

0

0

1

1

1

1

7

1

7

4

4

4

4

2

2

2

2

2

2

2

2

1

1

0

0

1

1

0

0

6ID

A2

A1

A1

0

0

0

0

2

2

2

2

0

0

0

0

4

7

1

1

0

3

0

1

1

1

1

1

1

0

0

3

3

3

3

4

A1

A2

2

2

2

0

0

0

0

0

0

2

2

2

2

2

2

2

5

A2

A1

A1

A2

3

3

3

3

0

5

0

1

1

1

1

1

1

1

1

1

1

2

A1

A2

0

4

4

4

0

0

0

0

0

0

0

0

0

0

0

0

3

A1

A2

A2

A1

A1

1

1

0

0

5

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0

0

A1

A1

A2

A1

A2

1

1

1

1

5

1

2

2

2

2

2

2

2

2

2

2

5

A5

A5

A5

A4 A4

A5

A4

A5

A4A4

A4

A4

A4

A4 A4

A4

A4 A4

A4

A5

A5

A4

A4

A5

A4

A4

A5

0

A4

A5

A4

A5

A4

A5

A5

A4

A5

A4

A5

A5

A4

A5

Fig. 2. Example Computation of SSLE on a Chain of Six Processes

processes after 16 steps. All processes have now chosen 2 as the leader ID, their
choices will not change, and SSLE has stabilized.

We encourage the reader to verify that, in this example, B = 7 initially, then
drops to 5 in the first round, then to 4, then 3, then 2. B = 1 after five rounds,
and B = 0 thenceforth.

118 A.K. Datta, L.L. Larmore, and P. Vemula

Although we only show the first 16 steps, we remark that Leader .done is true
after 21 steps. All actions will cease after 25 steps.

4 Proof of SSLE

A legitimate configuration for SSLE is a configuration where the following con-
ditions hold.

1. All processes belong to a true tree rooted at Leader .
2. If P is any process, then P.level is equal to the length of the shortest path

from P to Leader .

Recall that simp ≤ n−1 is the length of the longest simple path in the network.
Our main result follows.

Theorem 1. From arbitrary configuration, SSLE is self-stabilizing and silent
within O(simp) rounds.

In this section, we sketch the proof of Theorem 1. The proof sketches are intuitive,
and only touch lightly on the finer technical details. The complete proof will be
given in the full paper.

4.1 Additional Notation

• ||P, Q|| = the length of the shortest path from process P to process Q.

• Level(P) = ||P,Leader ||.

• TP = the subtree rooted at P of the tree that contains P .

4.2 Elimination of Inferior Processes

Recall that B is the maximum energy of any inferior tree, if there is any; oth-
erwise B = 0. By definition of β, we have B ≤ 2simp + 2. We will show that B
decreases during every round. Thus, there will be no inferior trees and hence no
inferior processes after 2simp + 2 rounds have elapsed from initialization.

In the statements and proofs of Lemmas 1 and 2, we will consider just one
given step of the execution, γt−1 �→ γt.

Lemma 1. If R is a false root at γt−1 and also at γt, then the energy of TR

does not increase during the step.

Proof. (Sketch.) Since R cannot execute a color action, β(R) cannot change. By
induction on the length of the parental path from P to R, we can show that, if
P ∈ TR both before and after the step, β(P) cannot increase. In particular, if
P.color changes from 1 to 0, β(P) decreases by 2, while β(P) is unchanged in
all other cases.

Self-Stabilizing Leader Election in Optimal Space 119

Suppose, on the other hand, that P joins TR during the step, by attaching
to a process Q ∈ TR. Then Q.color = 1 both before and after the step, and
P.color = 0 after the step. β(P) = β(Q) after the step, and β(Q) does not
change.

Lemma 2. If R is a false root and S ∈ TR at γt−1, where S �= R, and if S is a
false root at γt, then the energy of TS at γt is less than the energy of TR at γt−1.

Proof. (Sketch.) During the step, S.parent leaves the tree, making S a root.
By induction on the length of the parental chain from S to R, we can prove
that β(S) at γt is less then β(R) at γt−1. Each step of the induction requires
examining several cases, depending on the colors of the processes both before
and after the step.

The rest of the proof is similar to that of Lemma 1.

Lemma 3. If B > 0, then B decreases during the next round.

Proof. (Sketch.) By Lemmas 1 and 2, B cannot increase at any step. Since any
inferior root is a false root, and every false root is enabled to execute Action A2,
every inferior root will reset during the round. By Lemma 2, B will decrease.

Lemma 4. After 2simp + 2 rounds have elapsed from initialization, there are
no inferior processes.

Proof. (Sketch.) By the definition of β, B ≤ 2simp + 2. By Lemma 3, B = 0
after 2simp + 2 rounds. Since every inferior process must belong to an inferior
tree, we are done.

4.3 Convergence after Elimination of Inferior Processes

After there are no more inferior processes, Leader is a true root within at most
one more round, after which Leader remains a true root. SSLE then stabilizes
within O(simp) additional rounds, as we shall explain in this section.

Although it appears to be intuitively obvious that SSLE will stabilize, we have
failed to find a simple proof. Our proof, which will appear in the journal version,
uses a complex potential argument.

The complexity of our argument is caused by the fact that only processes
whose color is 1 can recruit, and thus recruitment of processes by TLeader can be
delayed if processes are forced to wait to change color. This delay has two rather
different causes, making it difficult to obtain a proper potential to measure the
maximum number of rounds needed to stabilize.

One source of the delay is color deadlock , which we have already discussed.
If the sequence of colors of a parental chain in TLeader is of the form (01)∗,
i.e., maximally impacted color waves, it is color deadlocked except at the root
end. The “traffic jam” is slowly cleared out as Leader absorbs the waves by
alternating its own color.

120 A.K. Datta, L.L. Larmore, and P. Vemula

Much worse is the delay caused if all processes have color 0. In this case, none
of the processes in the tree can recruit. A color wave can only start at the leaves
of the tree, which can be very far from the root, and no process in the tree can
recruit until that color wave reaches it.

We say that a process P is exact if P.key = P.final key . At some step within
O(simp) rounds of initialization, every exact process which is a member of
TLeader will have color 1. Neighbors of those processes of color 1 will attach
to them by executing structure actions. Within O(diam) rounds after every ex-
act process in TLeader has had a chance to have color 1, all processes will join
TLeader and become exact.

Potentials. The arguments used to prove convergence make use of a potential
Σ, whose definition is quite complex.

Let:
T = TLeader

T � = {P ∈ T : P.level = Level(P)}
T [1] = {P ∈ T : P.color = 1}

θ(P) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if P �∈ T
0 if P = Leader
θ(P.parent) + 2 if P ∈ T , P �= Leader ,

and P.color = P.parent .color
θ(P.parent) − 2 if P ∈ T , P �= Leader ,

and P.color �= P.parent .color

ε(P, Q) =

⎧⎨⎩
θ(Q) + 1 if Q ∈ NP ∩ T [1] and Succ(Q.key) < P.key

and Is True Root(P) and False Chldrn(P) = ∅
−∞ otherwise

ε(P) = max
Q

{ε(P, Q)}

ζ(P, Q) =

⎧⎪⎪⎨⎪⎪⎩
θ(Q) + 2 if ¬Is True Root(P) and Q ∈ NP.parent ∩ T [1]

and Is True Root(P.parent)
and Succ(Q.key) < P.parent .key

−∞ otherwise
ζ(P) = max

Q
{ζ(P, Q)}

η(P, Q) =

⎧⎨⎩
θ(Q) + 3 if Q ∈ NP ∩ T [1] and ¬Is True Root(P)

and Succ(Q.key) < P.key
−∞ otherwise

η(P) = max
Q

{η(P, Q)}

σ(P) = max {θ(P), ε(P), ζ(P), η(P)}
Σ = max {σ(P)}

Note that Σ depends only on the configuration. Chasing definitions, it is fairly
easy to verify that 0 ≤ Σ < 2simp − 1.

Self-Stabilizing Leader Election in Optimal Space 121

Let γ∗ be the first configuration in the execution at which Leader is a true
root and there are no inferior processes. Let Σ∗ be the value of Σ at that
configuration.

We omit the proof of the following lemma, which is very technical and several
pages long.

Lemma 5. If Leader is a true root and there are no inferior processes, Then,
for any integer c > 0, Leader will execute a color action at least c times during
the next Σ + 5c − 4 rounds, provided Leader .done is false during those rounds.

The color potential. We define a function τ on T , which we call the color
potential , as follows:

– τ(Leader) = the number of times Leader has executed a color action since
γ∗.

– If P ∈ T and P �= Leader , then

τ(P) =
{

τ(P.parent) if P.color = P.parent .color
τ(P.parent) + 1 if P.color �= P.parent .color

Lemma 6. Suppose the configuration is good, P ∈ T , and P remains in T after
the next step. Then, during that step, τ(P) increases by 1 if P executes a color
action, and is unchanged otherwise.

Proof. By induction on P.level . If P.level = 0, then P = Leader , and we are
done by definition of τ . Otherwise, let Q = P.parent . Suppose P.color changes.
By the guards of the color actions, P.color = Q.color and hence τ(P) = τ(Q)
before the step, and Q cannot execute a color action during that step. By the
inductive hypothesis, τ(Q) does not change; thus τ(P) increases by 1, by the
definition of τ .

Suppose Q.color changes. By the guards of the color actions, P.color �= Q.color
and hence τ(P) = τ(Q) + 1 before the step, and P cannot execute a color
action during that step. By the inductive hypothesis, τ(Q) increases by 1; thus
τ(P) = τ(Q) after the step, by the definition of τ , and hence is unchanged.

Suppose neither P nor Q executes a color action. By the inductive hypothesis,
Q.color remains unchanged, and thus τ(P) remains unchanged, by the definition
of τ .

Lemma 7. Eventually, T � contains every process.

Proof. By induction on Level (P). Leader ∈ T � within 2simp +2 rounds. Within
simp additional rounds, Leader .done is false. Suppose P �= Leader . Pick Q ∈
NP such that Level(Q) = Level(P) − 1. By the inductive hypothesis, Q ∈ T �

eventually. By Lemma 5, P will eventually execute Action A5, which implies
that P ∈ T � at that time.

Lemma 8. Let γP be the first good configuration where P ∈ T �. Then τ(P) ≤
3Level(P) at γP .

122 A.K. Datta, L.L. Larmore, and P. Vemula

Proof. By induction on Level(P). If Level(P) = 0, then P = Leader , γP = γ∗,
and we are done, by definition of τ . Suppose Level(P) = L ≥ 1. Assume that
τ(P) > 3L at γP . Let Q = P.parent . Then, τ(Q) ≥ 3L and Q ∈ T �. By the
inductive hypothesis, τ(Q) was at most 3L− 3 at the configuration γQ. After Q
changes color two more times, P must have joined T �, and τ(Q) ≤ 3L − 1 by
Lemma 6. Thus, τ(P) ≤ 3L at γP , contradiction.

Let B0 be the value of B at initialization.

Lemma 9. SSLE stabilizes within B0 + Σ∗ + 15(diam) rounds of arbitrary ini-
tialization.

Proof. Let P be any process, and let L = Level(P). By Lemma 3, the configura-
tion γ∗ is reached within B0 +1 of initialization. Let γP be the first configuration
after γ∗ at which P ∈ T �. By Lemma 8, τ(P) ≤ 3L at γP .

Let γ′ be the configuration B0 + simp + Σ∗ + 15L rounds after initialization.
By Lemma 5, τ(Leader) ≥ 3L + 1 at γ′.

Suppose that γP occurs after γ′. Then τ(P) ≥ τ(Leader) ≥ 3L + 1 at γP ,
contradiction. Since L ≤ diam , our result follows.

Lemma 10. SSLE is silent within B0 + simp + Σ∗ + 18(diam) + 2 rounds.

Proof. Let L = max {Level(P)}. By Lemma 9, SSLE stabilizes within B0 +
simp + Σ∗ + 15(diam) rounds. Within L rounds additional rounds, Leader .done
holds. Let Θ = max {θ(P) : θ(P) + 2Level(P) > 0}, with the default value Θ =
−L if θ(P) + 2Level(P) = 0 for all P . Let ∆ = 1

2Θ + L, which is an integer since
θ is even. ∆ ≤ 2L, and as long as ∆ > 0, it must decrease by at least 1 every
round, since every process P where θ(P) + 2Level(P) > 0 and θ(P) = Θ must
execute a color action. When ∆ = 0, no further actions can be executed.

Our main result, Theorem 1, follows immediately from Lemma 10.

5 Conclusion

We present a silent self-stabilizing asynchronous distributed algorithm, SSLE, for
election of a leader of a network, where processes have unique IDs. The algorithm
stabilizes in O(n) rounds, using O(log n) space per process, and becomes silent
after an additional O(diam) rounds, under the weakly fair daemon.

SSLE is also silent and self-stabilizing under the unfair daemon. The proof
will be given in the journal version.

References

1. Afek, Y., Bremler, A.: Self-Stabilizing Unidirectional Network Algorithms by Power-
Supply. In: 8th Annual ACM Symposium on Discrete Algorithms, pp. 111–120 (1997)

2. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43,
1026–1038 (1994)

Self-Stabilizing Leader Election in Optimal Space 123

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Opti-
mal Self-stabilizing Synchronization. In: 25th Annual ACM Symposium on Theory
of Computing, pp. 652–661 (1993)

4. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Communi-
cations of the Association for Computing Machinery 17, 643–644 (1974)

5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
6. Dolev, S., Herman, T.: Superstabilizing Protocols for Dynamic Distributed Systems.

Chicago J. Theor. Comput. Sci. 1997-4, 1–40 (1997)

Tiara: A Self-stabilizing Deterministic Skip List

Thomas Clouser1, Mikhail Nesterenko1,�, and Christian Scheideler2

1 Deparment of Computer Science, Kent State University, Kent, OH, USA
2 Institute of Computer Science, Technical University of Munich, Garching, Germany

Abstract. We present Tiara — a self-stabilizing peer-to-peer network
maintenance algorithm. Tiara is truly deterministic which allows it to
achieve exact performance bounds. Tiara allows logarithmic searches and
topology updates. It is based on a novel sparse 0-1 skip list. We rigor-
ously prove the algorithm correct in the shared register model. We then
describe its extension to a ring and incorporation of crash tolerance.

1 Introduction

Due to the rise in popularity of peer-to-peer systems, dynamic overlay networks
have recently received a lot of attention. An overlay network is a logical net-
work formed by its participants across a wired or wireless domain. In open
peer-to-peer systems, participants may frequently enter and leave the overlay
network either voluntarily or due to failure. As peer-to-peer systems can con-
tain millions of users, faults and inconsistencies should be regarded as the norm
rather than an exception. Hence, overlay networks require mechanisms that con-
tinuously counter such disturbances. Simplistic ad hoc approaches that handle
individual fault conditions do not adequately perform in case of unanticipated,
complex or systemic failures. In practice many peer-to-peer systems, such as
KaZaA, Bittorrent, Kademlia, use heuristic methods in order to maintain their
topology. Moreover, solutions presented in research publications focus on con-
structing scalable and well-structured overlay networks in an efficient manner
[1,2,3,4,5,6,7,8,9] while offering only ad hoc solutions to fault tolerance. For the
overlay networks that are based on a sorted list or ring (e.g., [2,3,5,9]), recov-
ery can be achieved as long as this base structure can be maintained. However,
jointly maintaining such list and the complete structure is rather tricky.

One can argue that if nodes are randomly distributed, a sorted list or ring
with a sufficient number of redundant connections will not disintegrate with high
probability. However, it is not clear whether practical systems always satisfy such
randomization assumption. In addition, the problem of generating high-quality
trusted random numbers in a peer-to-peer systems is far from trivial. Moreover,
it is known that an adversary can quickly degrade the randomness of the peer-to-
peer system even if perfectly random numbers are reliably generated [10]. Thus,
some researchers [11,12] argue that overlay network architects need to consider
holistic approaches to fault tolerance and recovery, such as self-stabilization. In
� This research is supported in part by NSF Career award CNS-0347485.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 124–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tiara: A Self-stabilizing Deterministic Skip List 125

this paper we present Tiara. To the best of our knowledge, Tiara is the first self-
stabilizing skip-list based overlay network algorithm that supports logarithmic
searches and updates.

Related literature. Several algorithms presented in the literature focus on sta-
bilizing parts of overlay networks. Onus et al. [12] present several high-atomicity
solutions to linearizing an overlay network. Shaker and Reeves [13] describe
a distributed algorithm for forming a directed ring network topology. Hérault
et al. [14] describe a spanning tree formation algorithm for overlay networks.
Cramer and Fuhrmann [15] show that ISPRP — a ring-based overlay network
is, in certain cases, self-stabilizing. Caron et al. [16] describe a snap-stabilizing
prefix tree for peer-to-peer systems. Bianchi et al. [17] present a stabilizing search
tree for overlay networks optimized for content filters.

Several randomized overlay network algorithms have also been proposed.
Dolev and Kat [18] introduce the HyperTree and use it as a basis for their
self-stabilizing peer-to-peer system. Dolev et al. [19] describe a self-stabilizing
intrusion-tolerant overlay network.

Pugh [20] introduce skip lists as an alternative to balanced tree structures.
Munro et al. [21] describe a deterministic algorithm for skip list construction.
Awerbuch and Scheideler [3], Aspnes and Shah [2], and Harvey et al. [5] extend
the randomized skip list to distributed environments. Harvey and Munro [22]
present a deterministic distributed skip list.

Our contribution. In this paper we present Tiara. It stabilizes a novel 0-1
distributed skip list. Specifically, we demonstrate a self-stabilizing algorithm for
a sorted list and then show how to extend it to a self-stabilizing algorithm for a
skip list. Tiara can construct these structures without any knowledge of global
network parameters such as the number of nodes in the system, each node uti-
lizes only the information available to its immediate neighbors. Moreover, Tiara
preserves network connectivity so long as the initial network is connected. That
is, Tiara reconstructs the connectivity of the base sorted list on the basis of skip
list links. We rigorously prove Tiara correct in an asynchronous communication
register based model.We describe how Tiara can be extended to a ring structure
and how it can incorporate crash resistance.

Organization of the paper. First, we introduce our computational model.
Then, we describe a self-stabilizing algorithm for the sorted list and formally
prove it correct. We then extend it to a self-stabilizing algorithm for Tiara discuss
various extensions and efficiency improvements. We complete the paper with
future research directions and open problems.

2 Model

A peer-to-peer system consists of a set N of processes. Each process has a unique
integer identifier. A process contains a set of variables and actions. An action has
the form 〈name〉 : 〈guard〉 −→ 〈command〉. name is a label, guard is a Boolean
predicate over the variables of the process and command is a sequence assigning

126 T. Clouser, M. Nesterenko, and C. Scheideler

new values to the variables of the process. For each pair of processes a and b, we
define a Boolean variable (a, b) that is shared among them. Two processes a and
b are neighbors if this variable is true. The neighborhood of a process a is defined
as the set of all of its neighbors. Sets of neighbors may be maintained on different
levels. A neighborhood of process a at level i is denoted and denoted a.i.NB .
The right neighborhood of a, denoted a.i.R, is the set of neighbors of a with
identifiers larger than a. That is, a.i.R ≡ {b : b ∈ a.i.NB : b > a}. Similarly, the
left neighborhood of a, denoted a.i.L, are a’s neighbors with smaller identifiers.
That is, a.i.L ≡ {b : b ∈ b.i.NB : b < a}. Naturally, the union of a.i.R and a.i.L
is a.i.NB .

When describing a link we always state the smaller identifier first. That is, a is
less than b in (a, b). Two processes a and b are consequent if there is no process c
whose identifier is between a and b. That is, cnsq(a, b) ≡ (∀c :: (c < a)∨(b < c)).
The length of a link (a, b) is the number of processes c such that a < c < b.
By this definition the length of a link that connects consequent processes is
zero.

A system state is an assignment of a value to the variables of each process. An
action is enabled in some state if its guard is true at this state. A computation is
a maximal fair sequence of states such that for each state si, the next state si+1
is obtained by executing the command of an action that is enabled in si. This
disallows the overlap of action execution. That is, action execution is atomic. The
execution of a single action is a step. Maximality of a computation means that
the computation is infinite or it terminates in a state where none of the actions
are enabled. Such state is a fixpoint. In a computation the action execution is
weakly fair. That is, if an action is enabled in all but finitely many states of an
infinite computation then this action is executed infinitely often. This defines an
asynchronous program execution model.

A state conforms to a predicate if this predicate is true in this state; oth-
erwise the state violates the predicate. By this definition every state conforms
to predicate true and none conforms to false. Let T and U be predicates over
the state of the program. Predicate T is closed with respect to the program
actions if every state of the computation that starts in a state conforming to T
also conforms to T . Predicate T converges to U if T and U are closed and any
computation starting from a state conforming to T contains a state conforming
to U . The program stabilizes to T if true converges to T . Since we will focus
on self-stabilizing algorithms for overlay networks, and self-stabilization is only
possible for overlay networks that are initially connected, we identify with true
any state where the graph is connected.

While most of our program model is fairly conventional, we would like to draw
the reader’s attention to our way of modelling overlay network link management.
If one process updates its neighborhood, the change affects the neighbors of other
processes. For example, if process a adds b to its neighborhood by creating a link
(a, b), this also means that a is atomically added to b’s neighborhood. On the
other hand, if a removes b from its neighborhood, then also a is removed from
b’s neighborhood.

Tiara: A Self-stabilizing Deterministic Skip List 127

3 Core Tiara Description, Correctness Proof and
Complexity Estimate

In its core, Tiara contains two components: the bottom component (b-Tiara)
that maintains the processes at the lowest level in sorted order and the skip-list
component (s-Tiara) that constructs the higher levels of Tiara. These compo-
nents are interdependent. s-Tiara relies on b-Tiara to sort the lowest level, while
s-Tiara may append links to the bottom level to preserve the connectivity of the
system.

We present the components and prove them correct bottom up starting with
b-Tiara. However, the presentation of b-Tiara is divided into two parts: the
growing and trimming. We prove the stabilization of the growing part first as
the stabilization of s-Tiara depends on its correct operation. We prove the sta-
bilization of the trimming part last as it depends on the stabilization of s-Tiara.

3.1 The Bottom Component of Tiara (b-Tiara) and Stabilization of
Grow

Description. The objective of b-Tiara is to transform the system into a linear
graph with the processes sorted according to their identifiers. The algorithm for
b-Tiara is shown in Fig. 1. The only variables that b-Tiara manipulates are the
neighbor sets for each process u — u.0.NB . The right neighborhood of u, denoted
u.0.R is a subset of u.0.NB with the identifiers greater than u. Since u.0.R can
be computed from u.0.NB as necessary, u.0.R is not an independent variable
but a convenient shortcut. The left neighborhood u.0.L is defined similarly.

Each process u has two pairs of actions: grow and trim that operate to the
right and to the left of u. Action grow right is enabled if u discovers that its
right neighbor s has a left neighbor t that is not a neighbor of u. In this case
u adds t to its neighborhood. That is, u adds a link (u, t) to the graph. Even
though u is the left neighbor of s, t may be either to the left or to the right of u.
That is t < u or t > u. Regardless of this relation, u connects to t. Action grow
left operates similarly in the opposite direction.

process u
variables

u.0.NB — set of neighbor processes of u.
shortcuts

u.0.L ≡ {z : z ∈ u.0.NB : z < u}, u.0.R ≡ {z : z ∈ u.0.NB : z > u}
actions
grow right : (s ∈ u.0.R) ∧ (t ∈ s.0.L) ∧ (t �∈ u.0.NB) −→

u.0.NB := u.0.NB ∪ {t}
trim right : (s, t ∈ u.0.R)∧(t ∈ s.0.L)∧(∀z :z ∈ u.0.R :z ≤ s)∧(∀z :z ∈ s.0.L :z ≥ u)−→

u.0.NB := u.0.NB/{s}
grow left and trim left are similar

Fig. 1. The bottom component of Tiara (b-Tiara)

128 T. Clouser, M. Nesterenko, and C. Scheideler

•a •b •c •d •e

(a) grow right is enabled at c
and d. The execution of either
adds (c, d).

•a •b •c •d •e

(b) trim right is enabled at c
and trim left is enabled at e.
They remove (c, e).

•a •b •c •d •e

(c) grow right is enabled at b
and c. It adds (b, c).

•a •b •c •d •e

(d) trim right is enabled at b
and trim left is enabled at d.
They remove (b, d)

•a •b •c •d •e

(e) grow right is enabled at a
and b. It adds (a, b).

•a •b •c •d •e

(f) trim left at a or trim right
at c removes (a, c) and brings
the system to the legitimate
state.

Fig. 2. Example computation of b-Tiara. The processes are listed in increasing order
of their identifiers.

Action trim right eliminates extraneous links from the graph. This action
removes link (u, s) if u has a neighbor s that satisfies the following properties.
The guard for trim right stipulates that there has to be another process t that
is a neighbor of both u and s. Hence, if (u, s) is removed the connectivity of the
graph is preserved. Also, all right neighbors of u must be smaller than or equal to
s and all left neighbors of s are greater than or equal to u. The latter condition
is necessary to break symmetry and prevent continuous growing and trimming
of the same link. Action trim left operates similarly in the reverse direction. We
show an example operation of b-Tiara in Fig. 2.

Correctness proof. Denote B(N) the graph that is induced by the processes
of the system and the links of b-Tiara. We define the following predicate: GI ≡
(∀a, b ∈ N :: cnsq(a, b) ⇒ ∃(a, b)). That is, GI states that two consequent
processes are also neighbors.

Lemma 1. If a computation of b-Tiara starts from a state where B(N) is con-
nected, it is connected in every state of this computation.

Proof: The actions of b-Tiara do not disconnect B(N). Indeed, the actions that
remove links are trim right and trim left. Consider trim right. It removes a link (a, b)
if there exists a node c such that there are links (a, c) and (c, b). Thus, the removal
of (a, b) does not disconnect the graph. The argument for trim left is similar. �

Lemma 2. If a computation of b-Tiara starts from a state where B(N) is con-
nected, b-Tiara stabilizes to GI.

Proof: To prove the lemma we need to show that (i) GI is closed under the
execution of the actions of b-Tiara and (ii) regardless of the initial state, every

Tiara: A Self-stabilizing Deterministic Skip List 129

computation contains a state satisfying GI. Let us consider closure first. The
grow actions may not violate GI as they only add links. The trim action may
affect GI by disconnecting two processes a and b. However, trim right, which
removes link (a, b), is only enabled at process a if there is a process c such that
a < c < b. Therefore, if a and b are consequent, trim right is disabled. The
reasoning is similar for trim left. Hence the closure.

To show convergence, let us assume that there are two consequent processes
a and b that are not neighbors. That is b �∈ a.0.NB . Since the graph itself is
connected, there is a path ρ between a and b. If there are multiple paths, we
shall consider the shortest one. Let the length of ρ be the sum of the lengths of
its constituent links. The execution of a trim action does not change the length
of ρ. The execution of any of the grow actions does not increase the length of
ρ. Path ρ must contain at least one segment d, e, f such that both d and f are
either smaller than e or larger than e. In this case grow right, or respectively,
grow left, is enabled in both d and f . The execution of this action decreases the
length of the path. Hence, throughout the computation, the length of ρ decreases
until it is zero and a and b are neighbors. The lemma follows. �

3.2 The Skip List Component of Tiara (s-Tiara)

Description. The objective of s-Tiara is to establish a skip list on top of the
linearized graph created by b-Tiara. The structure maintained by s-Tiara is a
sparse 0-1 skip list. At each level i, node u maintains a set of neighbors u.i.NB .
Out of this set, the rightmost and leftmost neighbors are defined as right and
left skip links: u.i.rs and u.i.ls. A node may not have a right or left skip link at
some level if it is on either end of the list.

We denote right and left skip list neighbors of u at level i − 1 as v and x
respectively. Nodes w and y are respectively right and left neighbors of v and
x at the same level. We illustrate this notation in Fig. 3 as we will be using it
extensively throughout the correctness proof of the algorithm.

If both nodes u and v exist at level i and u.i.rs = v then this link is 0-skip
link. If u and w exist at level i and u.i.rs = w, then this link is a 1-skip link.
A process that exists at level i − 1 is up if it also exists at level i, it is down
otherwise. If a process that 1-skip link spans is down it is a cage. For example
u, v and w form a cage if u.i.rs links to w and v is down. The middle process is
inside the cage. Refer to Fig. 4 for the illustration of the concept of a cage. The
sparse 0-1 skip list has two rules of organization. First, all links are either 0 or
1 skip links. Second, if a node is on level i and it is not on the end of the list on
level i − 1 then at least one of its links is a 1 skip link.

i

i − 1 •y •x

•u

•u •v •w

Fig. 3. Aliases for neighbors of u in s-Tiara. v ≡ u.(i − 1).rs, w ≡ v.(i − 1).rs, x ≡
u.(i − 1).ls, and y ≡ x.(i − 1).ls, where u.i.rs and u.i.ls are right and left skip-list
neighbors of u at level i, respectively.

130 T. Clouser, M. Nesterenko, and C. Scheideler

i

i − 1

•y

•y •x

•u

•u

(a) u is adja-
cent to the cage
on the left.

i

i − 1

•x

•x •u

•v

•v

(b) u is inside
the cage.

i

i − 1

•u

•u •v

•w

•w

(c) u is adjacent
to the cage on
the right.

Fig. 4. Possible cages with respect to node u

process u
parameter i ≥ 0: integer — level of the skip list
variables

u.i.NB — set of neighbor processes of u at level i
shortcuts

v ≡ u.(i − 1).rs, w ≡ v.(i − 1).rs, x ≡ u.(i − 1).ls, y ≡ x.(i − 1).ls
u.i.R ≡ {z : z ∈ u.i.NB : z > u}, u.i.L ≡ {z : z ∈ u.i.NB : z < u}

u.i.rs ≡
{

(s : s ∈ u.i.R : (∀t : t ∈ u.i.R : t ≥ y)), if u.i.R �= ∅

⊥, otherwise
u.i.ls is defined similarly
exists(z, i) ≡ ((z �= ⊥) ∧ (z.i.NB �= ∅))
valid(u, i) ≡ ((((u.i.ls = y) ∨ (u.i.ls = x) ∨ (u.i.ls = ⊥)) ∧ (u.i.rs = w)) ∨

(((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥)) ∧ (u.i.ls = y)) ∨
((u.i.ls = ⊥) ∧ (u.i.rs = ⊥)) ∨
¬(exists(x, i) ∧ exists(u, i) ∧ exists(v, i)))

actions for i > 0
upgrade right : valid(u, i) ∧ ¬exists(v, i) ∧ (v �= ⊥) ∧ (w �= ⊥) ∧ (u.i.rs �= w) −→

u.i.NB := u.i.NB ∪ {w}
upgrade left is similar
bridge right : valid(u, i) ∧ exists(u, i) ∧ exists(v, i) ∧ (u.i.rs �= v) −→

u.i.NB := u.i.NB ∪ {v}
bridge left is similar
prune: valid(u, i) ∧ exists(u, i) ∧ (u.i.NB �= {u.i.rs, u.i.ls}) −→

u.0.NB := u.0.NB ∪ u.i.NB/{u.i.rs, u.i.ls},
u.i.NB := {u.i.rs, u.i.ls}

downgrade right : ¬valid(u, i) ∧ ¬((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥)) −→
u.0.NB := u.0.NB ∪ u.i.R,
u.i.R := ∅

downgrade left is similar
downgrade center : ¬valid(u, i) ∧ exists(x, i) ∧ exists(u, i) ∧ exists(v, i) −→

u.0.NB := u.0.NB ∪ u.i.NB ,
u.i.NB := ∅

Fig. 5. The skip list component of Tiara (s-Tiara)

The the algorithm is shown in Fig. 5. As before, to simplify the presentation
we introduce a few shortcuts. Sets u.i.R and u.i.L are the subsets of u.i.NB
that contain the identifiers of u’s neighbors with respectively higher and lower
identifiers than u. We define u.i.rs to be the neighbor with the link of the smallest
length among u.i.R. To put another way, u.i.rs connects to u’s right neighbor

Tiara: A Self-stabilizing Deterministic Skip List 131

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •b •f •i

•a •b •e •f

•e •f

(a) Level 1. downgrade right is
enabled at f , downgrade left is
enabled at i and upgrade left
is enabled at e. These actions
remove (f, i) and add (e, c).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •b •c •e

•a •b •e •f

•e •f

(b) Level 1. downgrade center
is enabled at b, upgrade right
is enabled f and upgrade left
is enabled at h. These actions
remove (a, b) and add (f, h).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•c •e •f •h

•a •b •e •f

•e •f

(c) Level 1. upgrade right is
enabled at a, upgrade left is
enabled at c, bridge right is
enabled at e and bridge left
is enabled at f . These actions
add (a, c) and (e, f).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•a •b •e •f

•e •f

(d) Level 2. downgrade right
is enabled at a and downgrade
left is enabled at b. These ac-
tions remove (a, b).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•e •f

•e •f

(e) Level 2. upgrade right is
enabled at a and upgrade left
is enabled at e. These actions
add (a, e).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•a •e •f

•e •f

(f) The system has reached a
legitimate state.

Fig. 6. s-Tiara. We list the processes in the increasing order of their identifiers. b-
Tiara has stabilized to GI. In each state we only mention the enabled actions that are
relevant to the discussion. We do not illustrate the operation of prune.

with the smallest identifier. Note that u.i.rs is ⊥ if u.i.R is empty. Shortcut
u.i.ls is defined similarly.

Predicate exists(z, i) is true if node z is present at all and if z.i.NB is not
empty. Node u may read only its immediate neighbor states. Thus, u may only
invoke exists on its neighbors and itself. Observe that exists is defined to return
false if it is invoked on a non-existent node. For example, if u is at the right end
of the list at level i and u invokes exists(u.i.rs, i). In this case exists(u.i.rs, i)
returns false. Predicate valid(u, i) captures the correct state of the system.
Specifically, it states that if u exists at level i then the length of the skip links
should not be more than 1 and either x or v does not exist at level i. The latter
condition guarantees that at least one link of u is a 1 skip link.

The actions of s-Tiara are as follows. Action upgrade right establishes a link
to w at level i if v is not up. That is, this link is a 1 skip link. If u is not up,
upgrade right brings u up to level i. Action upgrade left operates similarly in the

132 T. Clouser, M. Nesterenko, and C. Scheideler

opposite direction. Actions bridge right and left establish 0 skip links if both
nodes being connected are up. Action prune eliminates the links other than
u.i.rs and u.i.ls from u.i.NB. In case the links are not 0 or 1 skip, action down-
grade right completely removes the right neighborhood of u. Action downgrade
left operates similarly. And the last action downgrade center eliminates three
consecutive up nodes. This ensures that there could not be two consecutive 0
skip links. An example computation of s-Tiara is shown in Fig. 6.

Correctness proof. Our proof proceeds as follows. We state five predicates on
the level i of s-Tiara. In the sequence of lemmas we show that if the lower levels of
s-Tiara have stabilized, then level i of s-Tiara stabilizes to these predicates. The
conjunction of these predicates implies the stabilization of level i of s-Tiara. We
then use this fact as an inductive step in the convergence proof of stabilization
of s-Tiara.

Before proceeding with the proof, we introduce notation and terminology we
are going to use. Denote S(N) the graph induced by the processes of the system
as well as the links of b-Tiara and s-Tiara. Throughout the discussion we consider
process u and its neighbors as defined in the description of s-Tiara. A node u
is middle at level i if it has both left and right neighbors as well at least one
two hop neighbor. That is, middle(u, i) ≡ (exists(v, i − 1) ∧ exists(x, i − 1) ∧
(exists(y, i − 1) ∨ exists(w, i − 1))).

Below are the predicates to which s-Tiara stabilizes. Predicate good links.i
states that process u connects to processes at most two hops away. Predicate
one links.i enforces the rules of 0-1 skip list. Specifically, it stipulates that u
should either be inside the cage or should have adjacent cages to the left or
to the right. Predicates zero left links.i and zero left links.i ensure that the
0-links are in place. That is, the processes that are consequent at level i− 1 and
are up, are also connected at level i. Predicate only good links.i states that
the neighborhood of u does not have links other than rs and ls.

good links.i ≡ (∀u :: ¬exists(u.i) ∨
((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥) ∧
((u.i.ls = y) ∨ (u.i.rs = x) ∨ (u.i.ls = ⊥))

one links.i ≡ (∀u : middle(u, i) :
(¬exists(u, i) ∧ (x.i.rs = v) ∧ (v.i.ls = x)) ∨
(¬exists(v, i) ∧ (¬exists(w, i − 1) ∨ (u.i.rs = w))) ∨
(¬exists(x, i) ∧ (¬exists(y, i − 1) ∨ (u.i.ls = y))))

zero right links.i ≡ (∀u :: ¬exists(u.i) ∨ ¬exists(v.i) ∨ (u.i.rs = v))
zero left links.i ≡ (∀u :: ¬exists(u.i) ∨ ¬exists(x.i) ∨ (u.i.ls = x))
only good links.i ≡ (∀u :: ¬exists(u.i) ∨ (u.i.NB = {u.i.rs, u.i.ls}))

Lemma 3. Assuming that neighbor relations at level i−1 do not change through-
out the computation, s-Tiara stabilizes to good links.i

Proof: In proving this and consequent lemmas we show a stronger property of
closure and convergence of the predicate for a particular process u. This implies
the stabilization of the predicate for all u at the specified level.

Tiara: A Self-stabilizing Deterministic Skip List 133

Let us show closure first. The topology at level i − 1 does not change. Hence
once u.i.rs points to one or two hop neighbors v or w, the neighbor’s relative
positions do not change. Similar argument applies to u.i.ls. Let us consider the
actions and how they affect good links.i. Let us start with the actions of u.
Actions upgrade right and bridge right do not violate the predicate since they
set u.i.rs to respectively w and v. Similar argument applies to upgrade left and
bridge left. Action prune does not affect the predicate since it does not modify
either u.i.rs or u.i.ls. Neither do downgrade right and downgrade left since they
respectively set u.i.rs and u.i.ls to ⊥. Action downgrade center removes u from
level i altogether and hence cannot violate the predicate. The nodes further
than two hops away never connect to u. Hence the actions of other nodes cannot
violate the predicate either.

Let us now address convergence. The predicate can be violated only if u is
up. It is violated if either u.i.rs or u.i.ls points to a node other than u’s one
or two-hop neighbors. In this case either downgrade right or downgrade left are
enabled that bring the links in compliance with the predicate. �

Lemma 4. Assuming that neighbor relations at level i−1 do not change through-
out the computation and good links.i is satisfied, s-Tiara stabilizes to
one links.i

Proof: As a first step, we would like to make the following observation: once
a cage is formed, it is never destroyed. For example, assume that u, v and w
form a cage. The actions of u, and, similarly, w do not affect this link. Also, if v
is down, the only actions it can use to come up is upgrade right or upgrade left.
However, both are disabled since u and v are up. This observation guarantees
the closure of one links.i.

Let us discuss convergence. Assume that u is down. We consider two cases: u
is initially down and u is initially up and never goes down. If u is down, the only
way, u can come up is through execution of upgrade right or upgrade left at u,
w or y. In all cases cages adjacent to u are formed and the predicate is satisfied.
If u is down, then upgrade right is enabled in x and upgrade left in v. Thus if u
does not come up, then x or v execute these upgrade actions. In which case a
cage is formed with u inside. This satisfies the predicate as well.

Assume that u is up. If it ever goes down, the foregoing discussion applies.
The only remaining case is if u stays up for the remainder of the computation.
Throughout a computation of b-Tiara a node can come up only once. Indeed, a
node comes up only if it forms a cage. Since a cage is never destroyed, the node
never goes down. This means that a node can go down only once. Let us consider
the state of the computation where u’s neighbors x and v do not change their
up and down position. Both x and v cannot be simultaneously up in this state,
as it enables downgrade center at u. The execution of this action brings u down.
However, we assumed that u stays up for the remainder of the computation.
Thus, either x or v are down. Assume, without loss of generality, that v is down.
If w does not exist at level i − 1, one links.i is satisfied. Assume that w exists.
If link u.i.rs = w is present, one links.i is also satisfied. However, if it is not

134 T. Clouser, M. Nesterenko, and C. Scheideler

present, then upgrade right is enabled in u. Its execution establishes the link,
forms a cage and satisfies the predicate. �

Lemma 5. Assuming that neighbor relations at level i−1 do not change through-
out the computation and good links.i as well as one links.i are satisfied, s-
Tiara stabilizes to zero left links.i and zero right links.i

Proof: We prove the lemma for zero right links.i only. The proof for the
other predicate is similar. Let us argue closure. If one links.i is satisfied pro-
cesses do not go up or down. Thus, the only actions that can be enabled are bridge
and prune. The execution of either action maintains the validity of
zero left links.i. Hence the closure.

Let us address convergence. The predicate is violated only if the neighbor
processes u and v are both up and they do not have a link at level i. If one links.i
is satisfied, u forms a cage to its left, while v forms a cage to its right. Recall
that the cages are never destroyed. In this case u has bridge right while v has
bridge left enabled. When either action is executed the predicate is satisfied. �

Lemma 6. Assuming that neighbor relation at level i − 1 does not change
throughout the computation and good links.i, one links.i, zero right links.i
as well as zero left links.i are satisfied, s-Tiara stabilizes to only good links.i

Proof: (outline) The satisfaction of good links.i, one links.i,
zero right links.i and zero left links.i leaves only one possible action en-
abled — prune. In this case there are links in u.i.NB besides u.i.rs and u.i.ls
and they are moved to u.0.NB. �

Lemma 7. If a computation of Tiara starts from a state where S(N) is con-
nected, this computation contains a state where B(N) is connected.

Proof: The non-trivial case is where S(N) is connected while B(N) is not.
That is, the overall graph connectivity is achieved through the links at the higher
levels of Tiara. Let X and Y be two graph components of B(N) such that
they are connected in S(N). Let i > 0 be the lowest level where X and Y are
connected. Assume, without loss of generality that there is a pair of processes
a ∈ X and b ∈ Y , such that a.i.rs = b. In this case downgrade right is enabled
at a. The execution of downgrade right connects X And Y in B(N). The lemma
follows. �

Define

SI ≡ (∀i : i > 0 : good links.i ∧ one links.i∧
zero right links.i ∧ zero left links.i ∧ only good links.i)

Lemma 8. Tiara stabilizes to SI.

Proof: According to Lemma 7, every computation contains a state where
B(N) is connected. Due to Lemma 2, if B(N) is connected, b-Tiara stabilizes to

Tiara: A Self-stabilizing Deterministic Skip List 135

GI. The remainder of the proof is by induction on the levels of s-Tiara. If B(N)
is connected and GI is satisfied the topology of the level 0 does not change.
Hence, the requisite five predicates are vacuously satisfied. Assume that these
predicates are satisfied for all levels i−1. Once the predicates are satisfied, none
of the actions for processes at level i−1 are enabled. This means that the topol-
ogy at this level does not change. Applying Lemmas 3, 4 5 and 6 in sequence we
establish that the five predicates are satisfied at level i. Hence the lemma. �

3.3 Stabilization of Trim in b-Tiara

Link (a, b) is independent if there exists no link (c, d) different from (a, b) such
that c ≤ a and b ≤ d. Consider an arrangement where the nodes are positioned
in the increasing order of their identifiers.

Lemma 9. If a computation of b-Tiara that starts in a state where the graph is
connected and contains an independent link of non-zero length, this computation
also contains a suffix of states without this link.

Proof: Let (a, b) be an independent link of non-zero length. None of the grow
actions create independent links. The only action that makes a link independent
is a trim of another independent link. Thus, if an independent link is deleted,
it is never added. Thus, to prove the lemma it is sufficient to show that (a, b) is
eventually deleted.

Link (a, b) is non-zero length. This means that the node c consequent to
a is not the same as b. In other words a < c < b. b-Tiara stabilizes to GI
which ensures that a and c are connected. If c and b are not connected, both
of them have a grow action enabled that connects them. Observe that (a, b) is
independent. This means that all the right neighbors of a are to the left of b
and all the left neighbors of b are to the right of a. Moreover, we just showed
that there exists a node c such that a < c < b and there are links c ∈ a.R and
c ∈ b.L. This means that trim right is enabled at a and trim left is enabled at
b. The execution of either action deletes (a, b). �

We define the following predicate: T I ≡ (∀a, b ∈ N :: ∃(a, b) ⇒ cnsq(a, b))

Lemma 10. If Tiara starts in a state where it satisfies GI and SI, then it
stabilizes to T I

Proof: (outline) The conjunct of GI and T I is closed under the execution of
b-Tiara. Note also that if GI and SI are satisfied, then the actions s-Tiara are
disabled. Hence the closure of T I.

Let us consider convergence. Since the actions of s-Tiara are disabled, they do
not add links to B(N). If T I does not hold, then there is at least one independent
link of non-zero length. If the graph is connected the grow actions never create an
independent link. Consider a computation of b-Tiara that starts in an illegitimate
state. Let l be the length of the longest independent link. Since the state is not
legitimate, l > 0. According to previous discussion, new links of length l do not

136 T. Clouser, M. Nesterenko, and C. Scheideler

appear. Let (a, b) be the independent link of length l. According to Lemma 9,
(a, b) is eventually removed. Thus, all links of length l are eventually removed.
The lemma can be easily proven by induction on l. �

The discussion in this section culminates in the following theorem.

Theorem 1. Tiara stabilizes to the conjunction of GI, SI and T I.

4 Tiara Usage, Implementation and Extensions

Searches. Tiara maintains a skip list [20,21] which is equivalent to a distributed
balanced search tree. Hence the searches in Tiara proceed similar to searches in
such trees. Let b be a right neighbor of a at some level i of Tiara. The right
interval of a, denoted [a, b), is the range of identifiers between a and b. Left
interval is defined similarly. If a does not have a right neighbor, its interval is
not finite. That is, a’s interval contains all process identifiers greater than a.
Similarly, if a lacks left neighbor it’s interval is infinite on the left. Thus in any
level, the collection of intervals contains the complete range of identifiers.

Suppose a, c and b are consequent at level i − 1 of Tiara and a and b are
consequent at level i. That is c is in the cage. Since the identifiers are sorted,
c belongs to the interval [a, b). If a node is down, then one if its neighbors is
up. Thus a client process that has a pointer to a node in Tiara and wishing to
advance up the skip list only needs to examine the node’s neighbors.

Assuming that a client process connects to an arbitrary node in Tiara, the
search proceeds first upward then downward in the skip list. In the upward phase,
the client is moving up the list looking for the node whose interval contains the
identity. Since every level contains the complete id-range, this phase terminates.
Once the range is found, the client advances downward evaluating the cages
it encounters to narrow the search range. This procedure continues until the
desired node x is located or it is established that x belongs to the interval of
the consequent nodes at the bottom level. The latter case means that x is not
present in the system. There are O(log|N |) levels in Tiara. Thus, the upward
and the downward phases take O(log|N |) number of steps.

Joins and leaves. We assume that each process has two read-only Boolean
variables maintained by the environment: join and leave. Since the variables are
read-only, stabilization of their operation is the responsibility of the environment.
Let us consider join operation first. The joining node x connects to an arbitrary
node of the network. The variable join is set to true. We assume that the
environment may only set join to false after the node successfully inserts itself
at the bottom level of Tiara. The joining node executes a search to find the
bottom level interval [a, b) to which it belongs. Then, x makes a and b its right
and left neighbors respectively. After a and b discover the presence of a node
whose join is set to true, they remove link (a, b). Then, the upper levels of Tiara
adjust. The insertion of the node at the bottom level entails at most a constant
number of steps at each level of Tiara. Since the search takes at most O(log|N |)
steps, the total number of steps required for node join is also in O(log|N |).

Tiara: A Self-stabilizing Deterministic Skip List 137

Let us discuss the leave operation. The environment sets leave to true to
indicate that the node x requests disconnect. We assume that leave cannot be
set when join is set and it cannot be set back to false until the node disconnects.
When the right and left neighbors of x notice that the leave of x is set to true, the
neighbors add a link bypassing x at the bottom level. Node x can then disconnect.
The higher levels of Tiara execute the regular Tiara actions to accommodate the
missing node. At most a constant number of adjustment steps is required at each
level. Hence the total number of steps required for the node to leave Tiara is in
O(log|N |).
Crash resistance. Tiara can be separated into disconnected components by
the crash of even a single process. Tiara can be fortified against separation
due to crashes in the following manner. At the bottom, each process maintains
a crash-redundancy link to its right neighbor’s neighbor. That is, the bottom
level list becomes doubly connected. Thus, it can tolerate a single crash. The
crash tolerance can be further improved by adding similar links to more distant
processes. In an asynchronous model there is no reliable way to distinguish a
crashed process from a slow one [23]. Thus, to accomplish this, the processes need
to be equipped with failure detectors [24,25]. A failure detector alerts the process
if its neighbor crashes. Then, Tiara stabilizes to a legitimate state corresponding
to the system without the crashed process.

Extension to ring. Tiara can be extended to a ring structure similar to
Chord [9]. The idea is as follows. For b-Tiara, as well as for each level of s-Tiara,
the lowest id-process needs to add a special wraparound link to the highest-id
process. This wraparound link maintenance is carried out by the process without
left neighbors. After b-Tiara and s-Tiara stabilize, the lowest-id process at each
level is the only such process. The highest-id process at each level is the only
process without right neighbors.

Once the process determines that it has no left neighbors it starts positioning
the wraparound link. Essentially, the process continues to move the link to a right
neighbor of the destination of the link. Note that this movement stops once the
wraparound link reaches the highest-id process at that level. If the maintainer
of the wraparound link determines that it has left neighbors, it destroys its
wraparound link. Refer to a technical report [26] for a detailed description of
this extension.

Other improvements. There is a number of modifications to Tiara that make
it more efficient and applicable. At each level of Tiara, up to two out of three
nodes may be promoted to the next level. Although the number of levels is
logarithmic with respect to the system size, it may still be relatively large. The
number of levels may be decreased by modifying Tiara to promote fewer nodes.
For example, we can allow the nodes at level i to skip up to two or three neighbors
at level i − 1. This would require for each node to maintain data about its
extended neighborhood.

The grow operation of b-Tiara may force a process to acquire up to O(|N |)
neighbors during stabilization. This may require devoting extensive memory

138 T. Clouser, M. Nesterenko, and C. Scheideler

resources of each node to neighborhood maintenance. A simple way to miti-
gate it is to execute trim operations before grow. That is, if a process finds that
it has both trim and grow actions enabled. It executes trim. Care must be taken
to ensure that action execution is still weakly fair.

5 Future Work

We presented Tiara — a first deterministic self-stabilizing peer-to-peer system
with a logarithmic diameter. It provides a blueprint for a realistic system. We en-
vision several directions of extending this work: further efficiency improvements,
such as keeping the runtime and the degree of the self-stabilization process low,
and adding features required by practical systems. One interesting area to ex-
plore designing self-stabilizing algorithms for overlay networks that are guar-
anteed to have both small diameter and high expansion. This task is far from
trivial as the known non-stabilizing algorithms that satisfy these properties (e.g.,
[3,4]) appear to require complicated self-stabilization mechanisms. A desirable
scalability property of peer-to-peer networks is low congestion — the ability to
handle multiple concurrent search requests. Another important property is re-
sistance to churn — continuous leaving and joining of nodes. Thus, lowering
Tiara’s congestion and improving its resistance to churn is a significant avenue
of future research.

References

1. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: SOSP 2001: Proceedings of the eighteenth ACM symposium on Oper-
ating systems principles, pp. 131–145. ACM, New York (2001)

2. Aspnes, J., Shah, G.: Skip graphs. In: SODA 2003: Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pp. 384–393. Society for
Industrial and Applied Mathematics, Philadelphia (2003)

3. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data
structure for distributed environments. In: SODA 2004: Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, pp. 318–327. Society for
Industrial and Applied Mathematics, Philadelphia (2004)

4. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a dy-
namic overlay network for routing, data management, and multicasting. In: SPAA
2004: Proceedings of the sixteenth annual ACM symposium on Parallelism in al-
gorithms and architectures, pp. 170–179. ACM, New York (2004)

5. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: a
scalable overlay network with practical locality properties. In: USITS 2003: Pro-
ceedings of the 4th conference on USENIX Symposium on Internet Technologies
and Systems, p. 9. USENIX Association, Berkeley (2003)

6. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of
the butterfly. In: PODC 2002: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pp. 183–192. ACM, New York (2002)

Tiara: A Self-stabilizing Deterministic Skip List 139

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pp. 161–172. ACM, New York (2001)

8. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

9. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

10. Awerbuch, B., Scheideler, C.: Group spreading: A protocol for provably secure
distributed name service. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142. Springer, Heidelberg (2004)

11. Alima, L.O., Haridi, S., Ghodsi, A., El-Ansary, S., Brand, P.: Position paper: Self-
.properties in distributed k-ary structured overlay networks. In: Babaoğlu, Ö., Je-
lasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M.
(eds.) SELF-STAR 2004. LNCS, vol. 3460. Springer, Heidelberg (2005)

12. Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sort-
ing in graphs. In: ALENEX 2007: Proceedings of the Workshop on Algorithm
Engineering and Experiments, January 2007. SIAM, Philadelphia (2007)

13. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In:
P2P 2005: Proceedings of the Fifth IEEE International Conference on Peer-to-
Peer Computing, Washington, DC, USA, pp. 39–46. IEEE Computer Society, Los
Alamitos (2005)

14. Hérault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief announce-
ment: Self-stabilizing spanning tree algorithm for large scale systems. In: Datta,
A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer,
Heidelberg (2006)

15. Cramer, C., Fuhrmann, T.: Isprp: a message-efficient protocol for initializing struc-
tured p2p networks. In: IPCCC 2005: Proceedings of the 24th IEEE International
Performance Computing and Communications Conference, April 2005, pp. 365–
370. IEEE, Los Alamitos (2005)

16. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-
to-peer systems. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838,
pp. 82–96. Springer, Heidelberg (2007)

17. Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spa-
tial filters. In: ICDCS 2007: Proceedings of the 27th International Conference on
Distributed Computing Systems, Washington, DC, USA, p. 27. IEEE Computer
Society, Los Alamitos (2007)

18. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. Distributed
Computing 20(5), 375–388 (2008)

19. Dolev, D., Hoch, E., van Renesse, R.: Self-stabilizing and byzantine-tolerant over-
lay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 343–357. Springer, Heidelberg (2007)

20. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM 33(6), 668–676 (1990)

21. Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA 1992:
Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
pp. 367–375. Society for Industrial and Applied Mathematics, Philadelphia (1992)

140 T. Clouser, M. Nesterenko, and C. Scheideler

22. Harvey, N.J.A., Munro, J.I.: Deterministic skipnet. Inf. Process. Lett. 90(4), 205–
208 (2004)

23. Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with
one faulty process. Journal of the ACM 32(2), 374–382 (1985)

24. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722 (1996)

25. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
Communications of the ACM 43(2), 225–267 (1996)

26. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic
skip list. Technical Report TR-KSU-CS-2008-04, Department of Computer Science,
Kent State University (June 2008)

Local Synchronization on Oriented Rings

Doina Bein1, Ajoy K. Datta2, Chitwan K. Gupta2, and Lawrence L. Larmore2

1 University of Texas at Dallas, USA
siona@utdallas.edu

2 University of Nevada, Las Vegas, USA
{datta,guptac,larmore}@cs.unlv.edu

Abstract. We consider the local mutual exclusion (LME) problem on
a ring network. We present two self-stabilizing distributed algorithms,
with local mutual exclusion, for the dining philosophers problem on a
bidirectional oriented ring with two distinguished processes. The first
algorithm, which uses the composite atomicity model, works under an
unfair distributed daemon. The second algorithm, which uses the read-
write atomicity model, works under a weakly fair daemon. Both algo-
rithms use at most two extra bits per process to enforce local mutual
exclusion. Both algorithms are derived from a simpler algorithm using
transformations which can be applied to other algorithms on the ring.
The technique can be generalized to more complex topologies.

Keywords: Local mutual exclusion, transformer, oriented ring, self-
stabilization, synchronization.

1 Introduction

Local mutual exclusion (LME) has many applications in distributed systems.
LME is the property that adjacent processes, which might use the same resource,
are not allowed to enter their critical sections at the same time.

An LME transformer starts with an algorithm A on a network that may
not satisfy the LME condition, and produces a distributed algorithm B which
satisfies LME. It is desirable for the transformer to preserve certain proper-
ties of A. For example, if A is self-stabilizing, then B should also be self-
stabilizing.

Previous Work

Hoover and Poole [10] and Gouda [6] proposed self-stabilizing solutions for the
Dining Philosophers’ (DP) problem that use a central daemon and a distin-
guished process. Gouda and Haddix [7,8] proposed a transformer, called an al-
ternator, that transforms a system that executes actions serially into a system
that executes actions concurrently. Their transformer uses log d bits per pro-
cess, where d is the length of the longest cycle (d = 2 if the graph has no
cycles).

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 141–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 D. Bein et al.

Huang [9] gives a transformer on a network with an arbitrary topology, but
subject to a coloring and an orientation condition on the edges. Starting from
an algorithm that works under the weakly fair central daemon, the transformed
algorithm satisfies LME and works under the weakly fair distributed daemon,
but does not work under the unfair daemon. Nestorenko and Arora [1] give
an LME transformation which refines from composite atomicity to read-write
atomicity.

Our Contributions

We present two self-stabilizing LME distributed algorithms for the dining
philosophers problem on a ring with two distinguished processes; Algorithm B
in Section 5, using the composite atomicity model and Algorithm C in Section
6, using the read-write atomicity model. These algorithms are obtained by using
transformers, starting with Algorithm A, a naive algorithm given in Section 4.
Both transformers require at most two extra bits per process to enforce local
mutual exclusion, and Algorithm B uses one more bit in each of the two distin-
guished processes, to ensure that it works under the unfair daemon. In Section
7, we give a transformer that changes an serial algorithm on the ring to a dis-
tributed algorithm with the LME condition and which works under the unfair
daemon, while preserving self-stabilization.

Outline of the Paper

In Section 2, we describe the models. In Section 3, we define the dining philoso-
phers problem. In Section 4, we give a naive algorithm for the dining philosophers
problem. In Section 5, we give a transformed algorithm, Algorithm B, for the
dining philosophers problem which satisfies LME, in the composite atomicity
model under the unfair daemon. Algorithm B is also silent. In Section 6, we
give a transformed algorithm, Algorithm C, for the dining philosophers problem
which satisfies LME, in the read-write atomicity model under the weakly fair
daemon. In Section 7, we define a general transformer for the ring. In Section 8,
we discuss future work.

2 Preliminaries

We are given a ring network, consisting of processes P1, . . . Pn, n ≥ 3. We assume
the shared memory model of computation introduced in [3]. In this model, a
process P can read its own registers and those of its neighbors, but can write
only to its own registers. The evaluations of all guards and executions of all
statements of actions are presumed to take place in one atomic step; this model
is called composite atomicity [5]. In the read-write atomicity model [4], a process
can either read one neighbor or write to its own shared variables in a step, but not
both. We assume that each transition from a configuration to another is driven
by a scheduler , also called a daemon. If one or more processes are enabled, the
daemon selects at least one of these enabled processes to execute an action. The

Local Synchronization on Oriented Rings 143

daemon is weakly fair if every continuously enabled process must eventually be
selected; if the daemon has no such restriction, it is unfair .

2.1 Local Mutual Exclusion

We say that a distributed algorithm satisfies the local mutual exclusion (LME)
property if no two neighboring processes may be in their critical section at the
same time. This does not necessarily mean that they cannot be selected during
the same step. For example, in Algorithms B and C given in this paper, not
every action causes a process to enter its critical section, and it is possible for
two neighboring processes to act at the same time, as long as at most one of
them is in its critical section.

2.2 Self-stabilization and Silence

The concept of self-stabilization was introduced by Dijkstra [3]. Informally, we
say that distributed algorithm is self-stabilizing if, starting from a completely
arbitrary configuration, the network will eventually reach a legitimate configu-
ration. We refer the reader to [3] for a detailed discussion of the property.

We say that A is silent if every execution is finite. In other words, starting
from an arbitrary configuration, the network will eventually reach a configuration
where no process is enabled.

3 The Dining Philosophers Problem

In this section, we describe the dining philosophers problem, introduced by Di-
jkstra [2]. We use terminology taken from Lynch [11].

Each philosopher Pi is represented by two processes, the user Ui, and the
agent , which we also call Pi. Ui, which we think of as controlled by an application,
can request that Pi enter its critical section. Once Pi enters its critical section,
Ui will eventually signal that it is satisfied , after which Pi can leave its critical
section. Ui can then repeat its at arbitrary times, infinitely often.

In Dijkstra’s original formulation, each Pi must use two resources (“forks”)
to enter its critical section, and each resource can only be used by one agent at
a time. That is,two neighboring agents can be in their critical sections simulta-
neously. A solution to the dining philosophers problem must avoid conflict i.e.,
satisfy the LME property, and must also avoid deadlock and starvation.

4 Algorithm A

We now give a distributed algorithm, Algorithm A, for the dining philosophers
problem on ring. All agent processes are anonymous, i.e. they all have the same
program and do not use any ID information.

Algorithm A enforces local mutual exclusion, provided that the scheduler
selects only one process during each step. If two neighboring processes should

144 D. Bein et al.

f 5f 4f 3f 2f 1

P1 P2 P3 P4
P5

U1 U2
U3 U4 U5

Fig. 1. Network of Processes and Resources for the Dining Philosophers Problem, for
n = 5 (Taken from Figure 11.2 of [11])

be selected simultaneously, conflict will occur as both try to enter their critical
sections at the same time.

Starvation is also a problem with Algorithm A, unless the scheduler is careful
to select every process that is waiting to enter its critical section eventually.

In Section 5, we transform Algorithm A into Algorithm B, which avoids both
conflict and starvation, even with the unfair daemon, and which uses the com-
posite atomicity model.

In Section 6, we transform Algorithm A into Algorithm C, which uses the read-
write atomicity model, and which avoids conflict. However, to avoid starvation,
Algorithm C requires the daemon to be weakly fair.

4.1 Formal Definition of Algorithm A

We write:

Left(Pi) =

{
Pn if i = 1

Pi−1 otherwise

Right(Pi) =

{
P1 if i = n

Pi+1 otherwise

Variables of Algorithm A
Any agent process P has the following shared variable.

P.state ∈ {waiting , executing, idle}.

Any user process U has the following shared variable.

U.state ∈ {request , sat}. The value of this variable is not controlled by the
algorithm; rather, by an outside application.

Predicates of Algorithm A

Free(P) ≡ (Left(P).state �= executing) ∧ (Right(P).state �= executing)
Conflict(P) ≡ ((P.state = executing) ∧ ¬Free(P))

Local Synchronization on Oriented Rings 145

CS Error(P) ≡ Either P.state = executing and P is not in its critical
section, or P is in its critical section and P.state �= executing.

Error(P) ≡ Conflict(P) ∨ CS Error(P)

Macros of Algorithm A

Enter CS (P): P enters its critical section.

Leave CS (P): P leaves its critical section.

Algorithm A gives a solution to the dining philosophers problem if the sched-
uler has the following two properties:

1. No two adjacent processes are simultaneously selected to execute Action A3.
2. If P.state = waiting , then P will eventually be selected.

The first condition is local mutual exclusion, while the second condition is
fairness . It is desirable to have an algorithm for the dining philosophers problem
that does not depend on the benevolence of the scheduler. In the next section,
we overcome that limitation.

In all the action tables in this paper, each action is given a priority. In order
for an action to be enabled, its guard must be true, and no action with a lower
priority number may be enabled.

Table 1. Actions of Algorithm A

A1 Correct Error (P) −→ P.state ← idle
priority 1 Error Leave CS (P)

A2 Start P.state = idle −→ P.state ← waiting
priority 2 Wait User(P).state = request

A3 Enter P.state = waiting −→ P.state ← executing
priority 2 CS Free(P) Enter CS (P)

A4 Leave P.state = executing −→ P.state ← idle
priority 2 CS User(P).state = sat Leave CS (P)

5 Algorithm B

We now give a distributed algorithm, Algorithm B, for the dining philosophers
problem on a almost anonymous ring with two distinguished processes; the other
processes we call normal . We use the same topology as in the previous section,
but we allow the distinguished processes to have separate programs.

146 D. Bein et al.

Each distinguished process has all the same shared variables as the normal
processes, plus two additional “special” shared variables. A normal neighbor of
a distinguished process does not know that its neighbor is distinguished. The
distinguished neighbor of a distinguished process P , which we call Partner(P),
can read P ’s special shared variables, but its normal neighbor cannot.

Overview of Algorithm B. Each process has a control bit P.S ∈ {0, 1},
which plays the same role as the control bit defined by Huang [9]. P1 and Pn

each have a lock bit , P.lock ∈ {0, 1}, which also plays the same rule as Huang’s
control bit; it also has a Boolean flag. Both P.lock and P.flag are special shared
variables.

Local mutual exclusion is enforced by the control bits and the lock bits. The
easiest way to visualize this is to think of each edge as having a “token” which
is always held by one of the two processes. A process P is Ready if it holds
the tokens of both of its incident edges. That way, two neighboring processes
can never be Ready simultaneously. Call the edge between the two distinguished
processes the special edge, and the others normal edges . The location of the
token for each normal edge is determined by the control bits at each end, while
the location of the token for the special edge is determined by the lock bits. In
each case, the token is at the left end of the edge if the bits agree, and at the
right end if the bits disagree.

When a normal process P is Ready , i.e. holds both of its edge tokens, it can
enter the critical section, provided it has has a pending request from its user
process, indicated by the fact that P.state = waiting . When P enters its critical
section, it releases both tokens by reversing its control bit. In order to prevent
deadlock, a normal process also releases its tokens if it is Ready and it has not
received a request.

The need for the special edge should now be clear. If all processes were normal,
the LME mechanism could deadlock. For example, and if all their control bits
are the same, all tokens are on the left ends of their edges, and no process could
ever become Ready . We break the deadlock by allowing the token on the special
edge to move independently.

Token Priority. To avoid deadlock, edge tokens are prioritized. A distinguished
process that holds its normal edge token and has a pending request holds onto
that token until it gets the special edge token, but if it has the special edge token
only, it releases it. This technique is used by Huang [9].

Fairness. Huang’s synchronizer works under the weakly fair daemon, but not
the unfair daemon. In order to make Algorithm B work under the unfair daemon,
we make use of the flag bits. A distinguished process yields the special edge token
to its partner only if it sees that its partner has raised its flag. If we did not
use this feature, the unfair daemon could cause that token to shuttle endlessly
back and forth between the two distinguished processes if neither has a pending
request, while refusing to select any other process.

Local Synchronization on Oriented Rings 147

5.1 Formal Definition of Algorithm B

Algorithm B uses all the same variables, predicates, and macros as Algorithm
A, together with some additional ones.

Additional Shared Variables of Algorithm B

P.S ∈ {0, 1}, the control bit, a normal shared variable.

P.lock ∈ {0, 1}, if P ∈ {P1, Pn}, the lock bit, a special shared variable.

P.flag Boolean, if P ∈ {P1, Pn}, a special shared variable.

Additional Predicates of Algorithm B

S Ready(P) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P.S = Right(P).S if P = P1

P.S �= Left(P).S if P = Pn

(P.S = Right(P).S) ∧
(P.S �= Left(P).S) otherwise

Lock Ready(P1) ≡ P1.lock �= Pn.lock

Lock Ready(Pn) ≡ Pn.lock = P1.lock

Ready(P) ≡
{

S Ready(P) ∧ Lock Ready(P) if P ∈ {P1, Pn}

S Ready(P) otherwise

Additional Macros of Algorithm B

Reverse(P.S): Change P.S from 0 to 1 or vice versa.

Reverse(P.lock): Change P.lock from 0 to 1 or vice versa, if P ∈ {P1, Pn}.

5.2 Proofs for Algorithm B

Lemma 1
(a) From an arbitrary configuration, the network will reach a legitimate config-
uration within one round.
(b) From a legitimate configuration, the network will never reach an illegitimate
configuration.

Proof. If Error(P), then P is enabled to execute Action B1, and will do so
within one round. No action can cause Error (P) to become true.

Henceforth, we will assume that the network is always in a legitimate configuration.

Let Num(P) = the number of times Reverse(P.S) has executed
since the network was initialized

148 D. Bein et al.

Table 2. Actions of Algorithm B

B1 Correct Error (P) −→ P.state ← idle
priority 1 Error Leave CS (P)

B1 Start P.state = idle −→ P.state ← waiting
priority 2 Wait User(P).state = request

B2 Raise P ∈ {P1, Pn} −→ P.flag ← true

priority 2 Flag P.state = waiting
S Ready(P)
¬P.flag

B3 Lower P ∈ {P1, Pn} −→ P.flag ← false

priority 2 Flag (P.state �= waiting ∨
¬S Ready(P))
P.flag

B4 Yield P ∈ {P1, Pn} −→ Reverse(P.lock)
priority 2 Control Lock Ready(P)

Token Partner(P).flag
¬P.flag

B5 Yield P.state �= waiting −→ Reverse(P.S)
priority 2 Lock S Ready(P)

Token

B6 Enter P.state = waiting −→ P.state ← executing
priority 2 CS Ready(P) Enter CS (P)

Free(P) Reverse(P.S)
if P ∈ {P1, Pn} then

Reverse(P.lock)
P.flag = false

endif

B7 Leave P.state = executing −→ P.state ← idle
priority 2 CS User(P).state = sat Leave CS (P)

τ(Pi) =

⎧⎪⎪⎨⎪⎪⎩
0 if i = 1

τ(Pi−1) + 1 if i > 1 and Pi−1.S = Pi.S

τ(Pi−1) − 1 otherwise

∆(P) = Num(P) − Num(P1) − 1
2τ(P)

Lemma 2. For any process P , ∆(P) never changes.

Local Synchronization on Oriented Rings 149

Proof. (Sketch.) No action of any process can change the value of ∆(P).

Let T =
n(n − 1)

4
+ nNum(P1) + 1

2

n∑
i=2

τ(Pi) (1)

Remark 1. T is an integer, and nNum(P1) ≤ T ≤ nNum(P1) + n(n−1)
2 .

Lemma 3. During any given step, T increases by the number of processes that
execute Reverse(P.S) during that step.

Proof. Execution of Reverse(Pi.S) causes τ(Pi) to increase by 2 if i > 1, and
hence causes T to increase by 1. Execution of Reverse(P1.S) causes Num(P1) to
increase by 1 and causes τ(Pi) to decrease by 2 for all i > 1, and hence causes
T to increase by 1.

Lemma 4. Eventually some process will execute Reverse(P.S), i.e., Action B5
or B6.

Proof. By Lemma 1, we can assume there is no error.
There must be at least one process which is S-enabled, namely the process

with the minimum value of τ .
Case I: Some P �= {P1, P2} is S-enabled. If P.state �= waiting , P can ex-

ecute Action B5. If P.state = waiting , neither neighbor may enter its critical
section since it is not S-enabled. If a neighbor is already in its critical section, it
must eventually execute Action B7. P simply waits until Free(P), and can then
execute Action B6.

Case II: Both P1 and Pn are S-enabled. If one of those is not waiting, it can
execute Action B5. If both are waiting, then one of them is lock-enabled, and is
thus enabled to execute Action B6.

Case III: S Ready(P1) and ¬S Ready(Pn). If P1.state �= waiting , then P1
can execute Action B5. Otherwise, eventually either Pn will become S enabled,
reducing to Case II, or Free(P1) and P1.flag will become true, after which P1
can execute B6.

Lemma 5. If P.state = waiting for any process P , P will eventually enter its
critical section.

Proof. By Lemmas 3 and 4, T grows without bound. Since the other two terms
of (1) are bounded, Num(P1) must increase without bound. By Lemma 2, Num(P)
must also increase without bound, and hence P must eventually execute
Action B6.

Combining the results of the above lemmas, we conclude:

Theorem 1. Algorithm B solves the dining philosophers problem in the com-
posite atomicity model under a distributed unfair daemon, avoiding conflict after
the first round, and avoiding starvation.

150 D. Bein et al.

6 Algorithm C

In this section we present Algorithm C, a modification of Algorithm B which uses
read-write atomicity instead of composite atomicity. Algorithm C runs under the
weakly fair daemon.

6.1 Formal Definition of Algorithm C

Algorithm C uses almost exactly the same shared variables, functions, and
macros as Algorithm B. One exception is that the variable P.flag for a dis-
tinguished process is not used.

When a process P evaluates a guard of an action of Algorithm C, it uses
the stored copies of the shared variables of its neighbors instead of the current
variables. When P executes a read action, it reads the values of the shared vari-
ables of one of its neighbors. To guarantee that the algorithm makes progress, P
uses a local round robin queue to rotate between its alternatives, so that it will
eventually read any given neighbor, and will eventually execute every non-read
action that is enabled.

Table 3. Actions of Algorithm C

C1 Correct Error(P) −→ P.state ← idle
priority 1 Error Leave CS (P)

C2 Read Round-robin −→ Read Nbr(P)
priority 2 Neighbor

C3 Start P.state = idle −→ P.state ← waiting
priority 3 Wait User(P).state = request

C4 Yield P ∈ {P1, Pn} −→ Reverse(P.lock)
priority 3 Lock Lock Ready(P)

Token

C5 Yield P.state �= waiting −→ Reverse(P.S)
priority 3 Control S Ready(P)

Token

C6 Enter P.state = waiting −→ P.state ← executing
priority 3 CS Ready(P) Enter CS (P)

Free(P) Reverse(P.S)
if P ∈ {P1, Pn} then

Reverse(P.lock)
endif

C7 Leave P.state = executing −→ P.state ← idle
priority 3 CS User(P).state = sat Leave CS (P)

Local Synchronization on Oriented Rings 151

Theorem 2. Algorithm C solves the dining philosophers problem in the read-
write atomicity model, under the weakly fair daemon.

We will give the detailed proof of Theorem 2 in the full paper. The proof is
essentially the same as that of Algorithm B, with appropriate modifications
because of the change of model.

One problem with the read-write atomicity model is that a process might
execute an action which has been neutralized by a change in a neighbor’s state,
if the process does not yet know that the neighbor has changed state. Al-
gorithm C avoids this problem by using a gentlemen’s rule; a process never
“seizes” an edge token, but rather waits until it is freely given. This way,
if a process is mistaken about the state of its neighbor, that mistake is al-
ways on the “safe side.” If P has given the edge token to Q, but Q does not
know it yet, neither process will make use of the resource. represented by the
token.

Starvation cannot be avoided without making use of the weak fairness of the
daemon. Suppose P is enabled to enter its critical section, and Q is another
process which is not enabled to execute any action except a read action, and Q
already has correct copies of its neighbors shared variables. If the daemon selects
just Q at every step, Q will read the same values from its neighbors endlessly,
and Q will starve. On the other hand, a weakly fair daemon is required to select
Q eventually. If Q is a process enabled to enter its critical section.

7 A General Transformer on the Ring

We assume the same topology as in the earlier sections. The processes of the
network are Pi for all 1 ≤ i ≤ n, Pi and Pi+1 are neighbors, and Pn and P1 are
neighbors. As in Section 5, we refer to P1 and Pn as distinguished and the other
processes as normal ; similarly, we refer to the edge between P1 and Pn as special
and the other edges as normal.

Suppose we are given an algorithm A consisting of a program, AP , for each
process P . These programs could all be identical, or not. We assume that A is
self-stabilizing under the weakly fair central daemon. We construct a transformed
algorithm T (A), which satisfies the LME property, and is self-stabilizing under
the unfair daemon.

Overview of the Transformer. The construction is essentially the same
as the construction of Algorithm B from Algorithm A in Section 5. For sim-
plicity, we assume that in A, a process is in its critical section for only an
instant.

We use the same control and lock bits that we used for Algorithms B and C.

7.1 Formal Definition of the Transformer

Variables of Transform(A). Any process P has the following shared variables.

152 D. Bein et al.

Table 4. Actions of Transform(A)

D1 Raise P ∈ {P1, Pn} −→ P.flag ← true

priority 1 Flag A Ready(P)
S Ready(P)
¬P.flag

D2 Lower P ∈ {P1, Pn} −→ P.flag ← false

priority 1 Flag (A Ready(P) ∨
¬S Ready(P))
P.flag

D3 Yield P ∈ {P1, Pn} −→ Reverse(P.lock)
priority 1 Lock Lock Ready(P)

Partner(P).flag
¬P.flag

D4 Yield ¬A Ready(P)) −→ Reverse(P.S)
priority 1 Control S Ready(P) P.done ← Done(P)

¬P.done ∨ (P �= P1)

D5 Critical A Ready(P) −→ P.state ← idle
priority 1 Section Ready(P) Execute CS (P)

Reverse(P.S)
if P ∈ {P1, Pn} then

Reverse(P.lock)
P.flag = false

endif
P.done ← Done(P)

D6 Update P.done �= Done(P) −→ P.done ← Done(P)
priority 2 Done

All the shared variables of P defined for the algorithm A.

P.S ∈ {0, 1}.

P.lock ∈ {0, 1}, if P ∈ {P1, Pn}.

P.flag Boolean, if P ∈ {P1, Pn}.

P.done Boolean.

P1.lock and P1.flag can only be read by Pn, not by P2. Similarly, Pn.lock and
Pn.flag can only be read by P1, not by Pn−1.

Local Synchronization on Oriented Rings 153

Predicates of Transform(A)

A Ready(P) ≡ P is enabled to execute some action of AP .

S Ready(P) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P.S = Right(P).S if P = P1

P.S �= Left(P).S if P = Pn

(P.S = Right(P).S) ∧
(P.S �= Left(P).S) otherwise

Lock Ready(P1) ≡ P1.lock �= Pn.lock

Lock Ready(Pn) ≡ Pn.lock = P1.lock

Ready(P) ≡
{

S Ready(P) ∧ Lock Ready(P) if P ∈ {P1, Pn}

S Ready(P) otherwise

Done(P) ≡
{

¬A Ready(P) if P = Pn

¬A Ready(P) ∧ Right(P).done otherwise

Partners
The two distinguished processes recognize each other as partners. Write
Partner(P1) = Pn, and Partner (Pn) = P1.

Macros of Transform(A)

Reverse(P.S): Change P.S from 0 to 1 or vice versa.

Reverse(P.lock): Change P.lock from 0 to 1 or vice versa, if P ∈ {P1, Pn}.

Execute CS (P): P executes an enabled action of A.

Theorem 3. If A is self-stabilizing under the weakly fair central daemon, then
T (A) is self-stabilizing under the unfair daemon, and satisfies the LME condi-
tion. If A is silent, then T (A) is silent.

Proof. (Sketch.) We first note that T (A) satisfies the LME condition, since no
two neighboring processes can execute an action of A. Given a computation
of T (A), we can derive a computation of A by ignoring all actions except D5
and replacing each step which has more than one instance of Action D5 into
multiple steps of A. Since no two simultaneous instances of D5 can occur on
adjacent processes, the corresponding actions of A cannot influence each other.
As in Algorithm B in Section 5, the flags of the distinguished processes work to
ensure that that execution of A is weakly fair, since it is impossible for even an
unfair daemon to ignore any one process forever while selecting other processes.
Thus, if every weakly fair execution of A is eventually in a legitimate state, so
is every execution of T (A).

If A is silent, then, as T (A) executes, eventually ¬A Ready(P) for all P . In a
wave starting at Pn, P.done will become true for all P . When P1.done holds, P1

154 D. Bein et al.

will be unable to execute Action D4. Eventually, ¬S Ready(P) for all P �= P1,
and the network will be unable to execute any action.

8 Conclusion and Future Work

In this paper, we give two distributed algorithms for the classic dining philoso-
phers problem [3] in an almost anonymous ring. One of those uses the composite
model of atomicity and works under an unfair distributed daemon, while the
other uses the read-write model of atomicity and works under a weakly fair
distributed daemon.

Using the technique used in Section 5, we show how to transform any compos-
ite atomicity model self-stabilizing algorithm on the ring which works under the
weakly fair central daemon to a composite atomicity model self-stabilizing algo-
rithm which works under the unfair distributed daemon. If the original algorithm
is silent, the transformed algorithm will also be silent.

Using the technique used in Section 6, we can transform any composite atom-
icity model self-stabilizing algorithm on the ring which works under the weakly
fair central daemon to a read-write atomicity model self-stabilizing algorithm
which works under the weakly fair distributed daemon. The new algorithm will
not be silent; in fact it appears to be impossible to construct a silent algorithm
with read-write atomicity as it is usually defined, since a process has no way of
knowing that it already has the correct values of its neighbors’ variables. We will
give this transformer in the full paper.

Other Topologies. Our techniques work for any tree topology; in fact, the
needed transformations are much simpler in that case. We hope to extend our
results to topologies other than the ring or tree.

References

1. Nesterenko, M., Arora, A.: Stabilization-Preserving Atomicity Refinement. Journal
of Parallel and Distributed Computing 62, 766–791 (2002)

2. Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informatica 1,
115–138 (1971)

3. Dijkstra, E.W.: Self Stabilizing Systems in Spite of Distributed Control. Commu-
nications of ACM 17, 643–644 (1974)

4. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of Dynamic Dystems Dssuming
Dnly Dead/write Dtomicity. Distributed Computing 7, 3–16 (1993)

5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
6. Gouda, M.G.: The Stabilizing Philospher: Asymmetry by Memory and by Action.

Tech. Report TR-87-12. University of Texas at Austin (1987)
7. Gouda, M.G., Haddix, F.F.: The Linear Alternator. In: Proceedings of the 3rd

Workshop on Self-stabilizing Systems, pp. 31–47. Carleton University Press (1997)

Local Synchronization on Oriented Rings 155

8. Gouda, M.G., Haddix, F.F.: The Alternator. Distributed Computing 20, 21–28
(2007)

9. Huang, S.T.: The fuzzy philosophers. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000.
LNCS, vol. 1800, pp. 130–136. Springer, Heidelberg (2000)

10. Hoover, D., Poole, J.: A Distributed Self-stabilizing Solution For the Dining
Philosophers Problem. IPL 41, 209–213 (1989)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

Stabilization of Max-Min Fair Networks without

Per-flow State

Jorge A. Cobb1 and Mohamed G. Gouda2

1 Department of Computer Science
The University of Texas at Dallas

cobb@utdallas.edu
2 Department of Computer Science
The University of Texas at Austin

gouda@cs.utexas.edu

Abstract. Let a flow be a sequence of packets sent from a source com-
puter to a destination computer. Routers at the core of the Internet do
not maintain any information about the flows that traverse them. This
has allowed for great speeds at the routers, at the expense of provid-
ing only best-effort service. In this paper, we consider the problem of
fairly allocating bandwidth to each flow. We assume some flows request
a constant amount of bandwidth from the network. The bandwidth that
remains is distributed fairly among the rest of the flows. The fairness
sought after is max-min fairness, which assigns to each flow the largest
possible bandwidth that avoids affecting other flows. The distinguish-
ing factor to other approaches is that routers only maintain a constant
amount of state, which is consistent with trends in the Internet (such as
the proposed Differentiated Services Internet architecture). In addition,
due to the need for high fault-tolerance in the Internet, we ensure our
protocol is self-stabilizing, that is, it tolerates a wide variety of transient
faults.

Keywords: Stabilization, max-min fairness, quality of service, computer
networks.

1 Introduction

As the Internet grows, scalability at the core of the Internet has become a signif-
icant concern. To provide simple best-effort service, core routers do not need to
maintain any state information about the flows of packets that traverse them. To
provide more advance forms of quality of service, such as guaranteeing bandwidth
or delay, the Differentiated Services Architecture [1,2], which maintains only a
constant amount of state per router, is favored over the Integrated Services Ar-
chitecture [3,4], where each core router maintains state for each individual flow.

In this paper, we focus on providing fair bandwidth allocation among different
flows in a core network. There are many different notions of fairness, and each
of these leads to a different optimization objective. We adopt the notion of
max-min fairness. A bandwidth allocation is max-min fair [5], if no flow can

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 156–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stabilization of Max-Min Fair Networks without Per-flow State 157

be allocated a higher bandwidth without hurting another flow having equal or
lower bandwidth.

Max-min fairness satisfies many intuitive fairness properties, and it has been
studied extensively [6,7,8,9]. However, all of these proposed algorithms need-per
flow state.

In this paper, we present a fault-tolerant distributed algorithm for the compu-
tation of max-min bandwidth allocations. Our algorithm only requires a constant
amount of state information at each router.

Although constant-state algorithms have been presented earlier, [10,11], they
have disregarded fault tolerance altogether. Our algorithm is presented formally
and is shown to be stabilizing, i.e., resilient against a wide-variety of transient
faults.

The organization of this paper is as follows. Section 2 presents our notation
and defines stabilization. We assume two types of flows in our system: rigid
flows, whose bandwidth is constant, and adaptive flows, whose bandwidth is
determined by the max-min algorithm. Section 4 presents our signaling protocol
and how it is used to support rigid flows. Section 5 defines max-min fairness
formally and introduces adaptive flows. The stabilization of our algorithm is
discussed in Section 6. Finally, concluding remarks are given in Section 7.

2 Notation and Stabilization

A system consists of a set of processes, and a set of communication channels
between these processes. The topology of the system consists of a connected
undirected graph, where each node represents one process in the system, and each
edge between two nodes p and q indicates that processes p and q are neighbors
in the system. Neighboring processes are joined by a pair of communication
channels allowing them to exchange messages.

Each process is assumed to have access to a real-time clock. Clock values need
not be synchronized between processes. The only requirement is that clocks of
different processes advance at (approximately) the same rate.

Each process in a system is specified by finite sets of constants, variables, and
actions. The values of each variable are taken from some bounded domain of
values. Each action of a process p is of the form

〈guard〉 → 〈assignment〉

where 〈guard〉 can be in one of three forms: a) local, b) receiving, or c) timeout,
as follows.

A local guard is a boolean expression over the constants and variables of
process p. A receiving guard of the form rcv m evaluates to true if there is a
message of type m in one of the incoming channels of p. Finally, a timeout action
is executed when the clock of p has reached a certain value.

In the above action, 〈assignment〉 is a sequence of assignment statements, each
of which is of the form

x := E(y, . . .) if P

158 J.A. Cobb and M.G. Gouda

where x is a variable in process p, E is an expression of the same type as vari-
able x, and y is a either a constant or a variable in process p. Executing this
assignment statement assigns the value of expression E to variable x provided
predicate P is true. Otherwise, the value of x is left unchanged.

A state of a system S is specified by one value for each variable, taken from
the domain of values of that variable, in each process in S, and the contents of
each communication channel in S.

A transition of a system S is a triple of the form

(s, ac, s′)

where s and s′ are two states of system S and ac is an action in some process in
S such that the following two conditions hold.

i. Enablement: The guard of action ac is true at state s.
ii. Execution: Executing the assignment of action ac, when system S is in state

s, yields system S in state s′.

A computation of a system S is a sequence of the form

(s0, ac0, s1), (s1, ac1, s2), . . .

where each element (si, aci, s(i+1)) is a transition of S such that the following
two conditions hold.

i. Maximality: Either the sequence is infinite or it is finite and its last element
(s(z−1), ac(z−1), sz) is such that the guard of every action in system S is false
at state sz, and timeout actions cannot evaluate to true by increasing the
value of the clocks in the system.

ii. Fairness: If the sequence has an element (si, aci, s(i+1)) and the guard of
some action ac is true at state s(i+1), then the sequence has a later element
(sk, ack, s(k+1)) where ack is ac or the guard of ac is false at state s(k+1).

A predicate P of a system S is a boolean expression over the variables in all
processes in system S and the contents of the channels in S.

A system S is called P -stabilizing iff every computation of S has a suffix where
P is true at every state of the suffix [12,13,14].

Stabilization is a strong form of fault-tolerance. Normal behavior of the system
is defined by predicate P . If a fault causes the system to a reach an abnormal
state, i.e., a state where P is false, then the system will converge to a normal
state where P is true, and remain in the set of normal states as long as the
execution remains fault-free.

3 Network Model

Consider a computer network as depicted in Fig. 1. It consists of a set of core
routers surrounded by access networks. Access routers serve as intermediate
points between the core network and the access networks.

Stabilization of Max-Min Fair Networks without Per-flow State 159

Access network

Core router

Access router

Fig. 1. Core network

Consider a computer in an access network that generates data packets that
must cross the core network to reach their destination at a different access net-
work. We denote this sequence of packets as a flow.

As it is commonly assumed [15,16,17,18], access routers maintain information
about each individual flow, while core routers, for scalability purposes, do not.
In our case, core routers will maintain only a constant amount of information
regarding the flows that traverse them.

We model this by having three types of processes in our system: source pro-
cesses, router processes, and destination processes. Each source process corre-
sponds to the actions that an access router must perform for an individual flow.
Thus, there are multiple source processes per access router, and each source pro-
cess is associated with a single destination process at a different access router.

Routers have multiple processes, one per output channel, as shown in Fig.
2(a). Therefore, the path traverse by a flow is abstracted as shown in Fig. 2(b).
That is, data begins at a source process, it traverses multiple router processes,
and ends at a destination process.

The path across the core network between a source and destination is assumed
to be constant, which may be implemented with mechanisms such as MPLS [19].
Route changes across a core network are rare, and thus, they are viewed as faults
in our system.

There are two types of sources: rigid and adaptive. A source is rigid if the
bandwidth it reserves from the network is non-changing. A source is adaptive if
it must probe the network to determine how much bandwidth it is allowed to
use. Routers only keep aggregate (and hence constant) amount of information
regarding the flows that traverse them. Through signaling messages, the sources
are able to modify this aggregate information in order to maintain its accuracy.

To ensure correct synchronization of values between sources and routers, we
require some bounds on the delay of signaling messages. Routers must give signal-
ing messages high priority, ensuring that the end-to-end delay does not exceed ε
seconds. Messages exceeding this bound are discarded. This can be accomplished
in a variety of ways, including timestamping each message with its inception
time, or with the accumulated queuing delay that the packet has encountered

160 J.A. Cobb and M.G. Gouda

process
source

process
router

process
router

process
router router

process

a)

. . . process
destination

b)

output
channel

input
channel

input
channel

output
channel

r s

g

g

f

r
f

s

Fig. 2. Processes and flows in a core router

along its path. We thus incorporate this assumption on end-to-end delays into
our system model.

We conclude by defining the fairness we expect to achieve for adaptive sources.
We will consider max-min fairness [5], which is intuitively is defined as follows:
bandwidth is allocated to each flow so that an increase of the bandwidth allo-
cated to any flow f must be done at the expense of decreasing the bandwidth of
a flow g where the bandwidth allocated to g is smaller than that of f .

The bandwidth allocation to each flow can be defined iteratively as follows.
For each pair of neighboring processes p and q, we define the following variables:

– Let B(p, q) initially have the bandwidth of channel ch(p, q) minus the band-
width of the rigid flows traversing channel ch(p, q). B will contain the unal-
located bandwidth of the channel.

– Let F (p, q) be the set of adaptive flows traversing channel ch(p, q). F will
contain the set of flows whose bandwidth has not yet been determined.

The following steps are repeated until all flows have been assigned a band-
width, i.e., until F is empty for all edges.

– Let (p, q) be an edge such that

B(p, q)
|F (p, q)| = minx,y

{
B(x, y)
|F (x, y)|

}
– For every flow f ∈ F (p, q), assign to f a bandwidth of

B(p, q)
|F (p, q)|

Stabilization of Max-Min Fair Networks without Per-flow State 161

R5

g1 g2 g4g3

R1 R2 R3 R4

f

Fig. 3. Max-Min Fairness example

– For every edge (x, y) other than (p, q),
• Reduce B(x, y) by the sum of the bandwidths of the flows in F (p, q) that

also traverse (x, y).
• Remove from F (x, y) any flow that is also in F (p, q).

– F (p, q) is assigned the empty set and B(p, p) is assigned zero.

As a simple example, consider Fig. 3, where we have five routers and five
flows. Flow f traverses the entire network, while the remaining flows traverse
only a single hop. Assume all links have equal capacity C, except for the link
(R3, R4), which has capacity C/2.

To maximize the throughput of the system, each of flows g1, g2 and g4 must
be assigned a bandwidth of C, g3 must be assigned a bandwidth of C/2, while
flow f must be assigned a bandwidth of zero, which of course is unfair to f .

Under max-min fairness, at each link, we divide the bandwidth by its number
of flows, and find the minimum of these values. This occurs at link (R3, R4), with
a value of ((C/2)/2) = C/4, while all other links have a value of C/2. Thus, f
and g3 are assigned a bandwidth of C/4 each. Also, since f traverses the other
three links, their bandwidth is reduced by C/4.

We thus have a bandwidth of 3 · C/4 left at each of the remaining three
links. Since each of these has only one flow, then g1, g2, and g4 are assigned a
bandwidth of 3 · C/4.

Finally, throughout the paper, we use the terms bandwidth and data rate
interchangeably.

4 Rigid-Source Signaling

In this section, we present our signaling protocol, and show how it may be used
by the rigid sources to reserve bandwidth from the network. It is a variation of
a signaling protocol we presented in [20,21] for a different network model. The
protocol presented here however is strengthened to become stabilizing.

We make the following assumptions about the rigid sources:

– First, the set of rigid sources is assumed to be fixed. The reason for this re-
quirement is that converging to a stable assignment of bandwidth to sources
is not possible if the set of sources changes over time. We make this assump-
tion also for the adaptive sources.

– Since the set of rigid sources are fixed, we do not address the steps required
to setup/tear-down a source, and focus only on refreshing/correcting infor-
mation at the routers. This is a practical assumption in some core networks,

162 J.A. Cobb and M.G. Gouda

where flows would correspond to “data pipes” across the core, and the set
of these pipes changes infrequently.

– We assume that the sum of the bandwidth requirements of all the rigid flows
sharing a link is less than the bandwidth of the link.

As mentioned earlier, routers only maintain a constant amount of state infor-
mation. Hence, each router maintains, for each of its output channels, the sum
of the bandwidths of the rigid flows that traverse that channel. The remaining
bandwidth of the channel will be distributed among the adaptive flows.

The objective of the signaling protocol is to maintain the above information
current at each router, even though faults occur. For example, source processes
may die, or the path between a source and its destination may change.

To maintain updated the state at each router along its path, each rigid source
sends a Reserve message periodically. This message contains the desired band-
width of its flow, and, as mentioned earlier, it is sent across the path with high
priority and bounded round-trip time.

The router process maintains two variables, R and its “shadow copy” R̂.
Variable R contains the sum of the bandwidth of the rigid flows. The router also
maintains a boolean bit s, known as the “shadow bit”. Every T seconds, where
T is a predefined constant, the router updates its state in the following way:

s, R, R̂ := ¬s, R̂, 0

That is, the s bit is flipped, the shadow copy R̂ is assigned to R, and the shadow
copy R̂ is cleared to zero.

The objective of the Reserve message is to add the bandwidth of the flow to R̂
exactly once before the above assignments are done. In this way, the bandwidth
of the flow will always be included in R. This is accomplished as follows.

The Reserve message contains a bit vector s, with one bit for each router along
the path of the flow. These bits are the last-known values of the s bit of each
router along the path. The bandwidth of the flow is added to the shadow variable
only if the state has been updated (and thus s has changed) from the time of
the previous Reserve message of the flow. That is, the following two steps are
performed at the ith router whenever it receives a Reserve(r, s) message, where
r is the bandwidth of the flow.

– If si �= s, then, assign R̂ + r to R̂, and assign s to si.
– Forward the Reserve(r, s) message along the next hop to the destination of

the flow.

When the destination receives this message, it returns a ReserveAck message
back to the source, containing the updated vector s. A new Reserve message is
not sent until an acknowledgment is received for the previous Reserve message.

We next address how often the source of a flow should send a Reserve message.
As mentioned earlier, we assume a bound, ε, on the time for a signaling message
to traverse the network. A signaling message created at time t is discarded by
a router if it is received at a time greater than t + ε. State updates of different

Stabilization of Max-Min Fair Networks without Per-flow State 163

T T

t0 t2 t3

t1 + T - ε t1 t1 + T

Fig. 4. Timing of Reserve messages

routers are not required to be synchronized. The only assumption is that each
scheduler performs updates at least T seconds apart.

Consider Fig. 4, and consider a router along the path of flow f . A state update
occurs in the router at time t0, and another at time t2. At time t1, the source
of f transmits a Reserve message, which arrives at the router in the interval
(t0, t2). Thus, at least one Reserve message from f must arrive at the router in
the interval (t2, t3). In the worst case, t1 is almost equal to t2, which implies that
the next Reserve message must arrive at the router no later than t1 + T , i.e., it
must be sent no later than t1 + T − ε. Furthermore, the next Reserve cannot be
sent until a ReserveAck is received for the first Reserve, which at the latest will
occur at time t1 + 2 · ε. Thus, we require

t1 + 2 · ε < t1 + T − ε.

That is, 3 · ε < T , and the interval between successive transmissions of Reserve
messages should be at most T − ε.

The above signaling protocol is robust to a variety of faults. E.g., if a source dies,
then all the bandwidth reservation from the source will be removed within 2 · T
seconds, as follows. Within the first T seconds, R̂ is set to zero. Since the source
has died, its bandwidth is never added to R̂, and within the next T seconds, R̂ is
assigned to R. Similarly, if the path of a source changes, routers along the previ-
ous path will remove information about the source in 2 · T seconds, while routers
along the new path will add information about the source. If the information at
the routers is incorrect, it will also correct itself within 2 · T seconds.

We are now ready to present the specification of the source, router, and des-
tination processes. The source process is specified as follows.

process src[i]
const

r : integer {data rate}
d : process id {destination}
ε : integer {max. e2e delay}

var
s : bit vector {shadow-bit vector}
t : integer {time msg is sent}

begin

164 J.A. Cobb and M.G. Gouda

rcv ack f(i, d, s) → skip

timeout clock ∈ [t + 2 · ε, t + T − ε] →
send Reserve(i, d, r, s) to dst[d]
t := clock;

t + T − ε < clock < t → t := clock;
end

The source process contains two actions. In the first action, it receives a
ReserveAck message, which has traversed the network from the destination
back to the source. The only purpose of the message is to update the bit vector
s, which is done as a side effect of receiving the message. Thus, the right-hand
side of the action is empty.

The second action is a timeout action, in which a Reserve message is sent to
the destination. Variable t stores the time at which the last Reserve message
was sent. To ensure old Reserve and ReserveAck messages have left the network
before sending a new one, Reserve messages are sent with at least 2 ·ε seconds in
between. Furthermore, to ensure the message arrives in time at the routers, the
message should be sent no later than time t + T − ε. We assume that execution
of actions is done such that the timeout will be executed within the right time
interval. Failure to do so is considered a fault.

The last action is a sanity action in which t is restored to a sensible value in
case of a fault.

The specification of the router is as follows.

process router[i]
const

C : integer {channel bandwidth}
T : integer {shadow interval}

var
s : boolean {shadow bit}
R, R̂ : integer {fixed bandwidth}
t : integer {time of last timeout}

begin
rcv Reserve(x, y, r, s) →

R̂ := R̂ + r if si �= s
si := s;
send Reserve(x, y, r, s) to dst[y];

rcv ReserveAck(x, y, r, s) →
send ReserveAck(x, y, r, s) to src[x];

timeout clock > t + T →
s, R, R̂ := ¬s, R̂, 0;

Stabilization of Max-Min Fair Networks without Per-flow State 165

t := clock;

clock < t → t := clock;
end

In the first action, a Reserve message is received, and is forwarded along the
next hop to the destination. Before forwarding the message, the rate of the flow
is added to the shadow variable F̂ , provided a state change has occurred from
the last time a Reserve message from this flow was received, i.e., si �= s. Also,
si is updated to the value of s before forwarding the message. This ensures that
the flow is counted only once in F̂ .

In the second action, a ReserveAck is received. The router simply forwards
the message in the direction of the source.

In the third action, the router changes its state after T seconds from its last
state change. Thus, R̂ is assigned to R, R̂ is set to zero, and bit s is flipped. The
time of the state change is recorded in t.

The last action is a sanity action to restore t to a sensible value in case of a
fault.

The specification of the destination process is given next.

process dst[i]
begin

rcv Reserve(x, i, r, s) →
send ReserveAck(x, i, r, s) to src[x];

end

It simply consists of a single action that receives a Reserve message and
returns a ReserveAck in the direction of the source of the message.

5 Adaptive-Source Signaling

We next address how to modify the system to support adaptive sources. The
system should converge to a state where all adaptive sources have been given
their max-min fair share of the network bandwidth.

Consider the algorithm to compute max-min fairness given in Sec. 3. In order
to implement it, at each iteration we need to know, for each link, the number
of flows whose bandwidth has not been allocated, and the total bandwidth that
remains unallocated on the link.

This suggests that the information we maintain at the router is as follows:

– The sum of the bandwidths of adaptive flows that are not bottlenecked at this
router, that is, flows who cannot increase their bandwidth because another
router is preventing them from doing so. We will denote this sum as A.

– The total number of adaptive flows that are bottlenecked at this router, de-
noted by n. The bandwidth allocated to these flows will be the total band-
width C of the channel minus A above divided by the number of flows n.
We denote this bottleneck bandwidth by B, i.e., B = (C − A)/n.

166 J.A. Cobb and M.G. Gouda

In order for this information to be updated at the routers, the source needs
to know which router is its bottleneck router, what is the bottleneck bandwidth
of that router, and inform all other routers of this limit on the flow’s bandwidth.
Furthermore, this information may change over time, as the system converges
to a steady state.

We thus require sources to send a Probe message along the path to their
destination. The message contains the rate r currently being used by the source,
and whether the source is considered bottlenecked or not at each router. With
this information, the router can determine which of the following four cases apply
to the flow:

1. If the flow is bottlenecked at the router and its rate r is greater than the
bottleneck bandwidth B of the router (r > B), then the flow remains bot-
tlenecked at the router, but its new rate should be decreased to B.

2. If the flow is bottlenecked at the router and r < B, then the flow should
be no longer considered bottlenecked at this router. Thus, its bandwidth
r is added to A, and the number of bottlenecked flows n at the router is
decreased by one.

3. If the flow is not bottlenecked at this router and r > B, then the flow must
become bottlenecked at this router. Hence, n increases by 1, and A decreases
by r.

4. If the flow is not bottlenecked at this router, and r < B, then the state of
the flow and the router remain the same.

In order to refresh the information in a fault-tolerant manner, we also intro-
duce shadow copies of n and A, i.e., n̂ and Â. Furthermore, in order for the source
to be aware of which routers consider it to be bottlenecked, each Probe message
carries an additional bitmap b, where bi is true if the flow is bottlenecked at
router i along its path.

We now present the specification of the source, router, anddestinationprocesses.

process src[i]
const

d : process id {destination}
ε : integer {min. interpacket time}

var
s : bit vector {shadow-bit vector}
b : bit vector {bottleneck-bit vector}
r, r′, r′′ : integer {allocated rate}
t : integer {time msg is sent}

begin
rcv ProbeAck(i, d, r′′, s, b) →

r := r′;
r′ := r′′;

timeout clock ∈ [t + 2 · ε, t + T − ε] →
send Probe(i, d, r, r′,∞, s, b) to dst[d];

Stabilization of Max-Min Fair Networks without Per-flow State 167

t := clock;

t + T − ε < clock < t → t := clock;
end

An adaptive source has several more variables than a rigid source. It contains
a bitmap b (discussed above) and three bandwidth variables, r, r′, r′′, that are
included in each Probe message.

Variable r contains the current bandwidth of the source, i.e., this value has
been added to the bandwidth sum A at each router. On the other hand, r′

contains the updated bandwidth, that is, the new value that should be stored
at the routers. Finally, r′′ is initialized to infinity, and, as the Probe message
traverses to the destination, r′′ stores the minimum of the bottleneck bandwidths
of the routers along the path.

In the first action, the source receives a ProbeAck message. The values of r
and r′ are updated. The values of s and b are updated as a side effect of receiving
the message.

The timeout action is similar to the timeout action of a rigid source, except
that a Probe message is sent instead of a Reserve message. The last action is
again, a corrective action for the value of t.

process router[i]
const

C : integer {channel bandwidth}
T : integer {shadow interval}

var
s : boolean {shadow bit}
n, n̂ : integer {bottlenecked users}
A, Â : integer {adaptive bandwidth}
R, R̂ : integer {fixed bandwidth}
t : integer {time of last timeout}

begin
rcv Reserve(x, y, r, s) →

R̂ := R̂ + r if si �= s
si := s;
send Reserve(x, y, r, s) to dst[y];

rcv ReserveAck(x, y, r, s) →
send ReserveAck(x, y, r, s) to src[x];

rcv Probe(x, y, r, r′, r′′, s, b) →
{add flow to shadow variables}
n̂ := n̂ + 1 if si �= s ∧ bi;
Â := Â + r if si �= s ∧ ¬bi;
{change flow from category if necessary}

168 J.A. Cobb and M.G. Gouda

n, n̂, := n − 1, n̂ − 1 if r′ < B ∧ bi;
A, Â := A + r′, Â + r′ if r′ < B ∧ bi;
n, n̂ := n + 1, n̂ + 1 if r′ ≥ B′ ∧ ¬bi;
A, Â := A − r, Â − r if r′ ≥ B′ ∧ ¬bi;
{update values before forwarding}
si, bi := s, (r′ ≥ B);
r′′ := min(r′′, B)
send Probe(x, y, r, r′, r′′, s, b) to dst[d]

rcv ProbeAck(x, y, r′′, s, b) →
send ProbeAck(x, y, r′′, s, b) to src[x]

timeout clock > t + T →
s, n, A, R, n̂, Â, R̂ := ¬s, n̂, Â, R̂, 0, 0, 0;
t := clock;

clock < t → t := clock;
end

The router contains seven actions. The first two are the same as before: they
receive messages originating from rigid sources.

The last two actions are also similar to before. The last action restores the
value of t to a sensible value, and the timeout action performs a state change
of the router by assigning the shadow variables to their corresponding regular
variables, and flipping the shadow bit.

In the third action, a Probe message is received. The first step consists of
adding the bandwidth information of the flow to the shadow variables, provided
the shadow bit indicates this is necessary. The second step consists of evaluating
the four conditions mentioned above to ensure the flow is correctly placed in the
bottlenecked or not bottlenecked category. In this action, B and B′ are defined
as follows.

B =
C − A − R

n
B′ =

C − A − R − r

n + 1
The destination is similar to before; it receives a Probe message and returns

a ProbeAck message.

process dst[i]
begin

rcv Probe(x, i, r, r′, r′′, s, b) →
send ProbeAck(i, d, r′′, s, b) to src[x];

end

6 Stabilization of Max-Min Fairness

We next present an overview of the stabilization properties of our system. De-
tailed proofs will be available in [22]. Below, we refer only to Probe and ProbeAck

Stabilization of Max-Min Fair Networks without Per-flow State 169

messages of adaptive sources. Similar lemmas and theorems can be derived for
messages from rigid sources. As discussed earlier, routing between access net-
works is outside the scope of the paper. We simply assume that routing is sta-
bilizing1, and thus the routing tables converge to a sound and stable set of
values. This, combined with the timing restrictions on sending messages, gives
the following.

Lemma 1. The system stabilizes to the following predicate: every
Probe(x, y, . . .) message is located only along the path from x to y, and
every ProbeAck(x, y, . . .) message is located only along the path from y to x.

Similarly, due to the time restrictions on the sending of messages by the source
and the fast processing of messages at the routers, we have the following.

Lemma 2. The system stabilizes to the following predicate: for every x and y,
the number of Probe(x, y, . . .) messages plus the number of ProbeAck(x, y, . . .)
messages is at most one.

We next consider the relationship between the rates of the sources and the infor-
mation stored at the routers. Before this, the following two lemmas are necessary.
First, due to the timing of the state changes of the routers and the timing on
the generation of signaling messages by the source we have the following.

Lemma 3. Every computation of the system has a suffix such that the following
holds. In every state ui of the suffix, if the shadow bit of a router at state ui differs
from its value at a later state uj, then the router has received a Probe message
between ui and uj for every adaptive source that traverses the router.

Due to the above, we obtain the following relationship of the shadow bits of
messages, routers, and sources.

Lemma 4. The system stabilizes to the conjunction of the following predicates:

– if there exists a Probe(x, y, . . . , s, . . .) message along the ith hop of the path
from source x and destination y, then,
• 〈∀ j, (src[x].sj = router[j].s) ⇒ (Probe.sj = router[j].s)〉,
• 〈∀ j, (src[x].sj �= router[j].s ∧ i ≤ j) ⇒ (Probe.sj = src[x].sj)〉,
• 〈∀ j, (Probe.sj �= src[x].sj) ⇒ (i > j ∧ Probe.sj = router[j].s)〉,

where router[j] is the jth router along the path from source x to destination
y.

– if there exists a ProbeAck(x, y, . . . , s, . . .) message along the path from des-
tination y back to source x, then

〈∀ j, (ProbeAck.sj �= src[x].sj) ⇒ (ProbeAck.sj = router[j].s)〉
1 Most routing protocols such as link-state routing and distance-vector routing are in

essence stabilizing.

170 J.A. Cobb and M.G. Gouda

From the above, we can derive the relationship between the aggregate bandwidth
information at the routers and the bandwidth information of each individual
source, as follows.

Theorem 1. Let S(i) be the set of adaptive sources whose flows traverse router
i. Let b(x), s(x), r(x), r′(x) be the fields in the Probe and ProbeAck messages
of source x, and if neither of the two messages are in transit, then these values
correspond to the variables of the source.

Then, the system stabilizes to the following predicate. For all i,

– router[i].A = (
∑

x, x ∈ S(i), α(x) · r(x) + α′(x) · r′(x)), and
– router[i].n = |{x, x ∈ S(i) ∧ b(x)i}|, and
– router[i].Â =

(∑
x, x ∈ S(i), α̂(x) · r(x) + α̂′(x) · r′(x)

)
, and

– router[i].n̂ = |{x, x ∈ S(i) ∧ b(x)i ∧ s(x)i = router[i].s}|

where

– α(x) = 1 if ¬b(x)i and either there is a Probe message along the path from
src[x] to router[i] or there is no message from src[x] in the network. It is
zero otherwise.

– α′(x) = 1 if ¬b(x)i and either there is a Probe message along the path from
router[i] to the destination of src[x], or there is a ProbeAck message along
the path from the destination back to src[x]. It is zero otherwise.

– α̂(x) = 1 if α(x) = 1 ∧ (router[i].s = s(x)i). It is zero otherwise.
– α̂′(x) = 1 if α′(x) = 1 ∧ (router[i].s = s(x)i). It is zero otherwise.

Finally, the bandwidth values must converge to the max-min allocation for each
flow. The first lemma serves as a stepping stone for an induction proof leading
to the main theorem.

Lemma 5. Let B0 be the bandwidth assigned to the first set of flows in the max-
min algorithm. Then, every computation has a suffix where all of the following
hold.

– For any i, router[i].B ≥ B0.
– For any i, each of src[i].r, src[i].r′, src[i].r′′ are at least B0.
– For each Probe message, each of Probe.r, Probe.r′, P robe.r′′ are at least B0.
– For each ProbeAck message, ProbeAck.r′′ ≥ B0.

Theorem 2. Let SA(i) and SR(i) be the set of adaptive and rigid sources, re-
spectively, whose flows traverse router[i]. Then, the system stabilizes to the fol-
lowing predicate. For all i and j,

– if src[j] is an adaptive source, then src[j].r equals the max-min fair band-
width corresponding to the source, and

– router[i].R =
(∑

x, x ∈ SR(i), src[x].r
)
, and

– router[i].A =
(∑

x, x ∈ SA(i) ∧ ¬src[x].bi, src[x].r
)
, and

– router[i].n =
∣∣{x, x ∈ SA(i) ∧ src[x].bi}

∣∣

Stabilization of Max-Min Fair Networks without Per-flow State 171

7 Concluding Remarks

Above, we did not discuss the stabilization time of our system. The stabilization
predicate of Theorem 1 can be shown to stabilize in O(T) time, where T is the
interval between state changes at a router.

The stabilization time of Theorem 2, on the other hand, still remains an
open problem. It can be shown that if bandwidth values are discrete, then the
convergence time is in the order of O(N ·∆), where N is the number of discrete
bandwidth values, and ∆ is the time interval between signaling messages from
a source. We have shown in Sec. 4 that ∆ ≤ T − ε, so in the worst case the
convergence time is O(N · T), unless a tighter bound is imposed on ∆.

References

1. Heinanen, J., Baker, F., Weiss, W., Wroclawski, J.: Assured forwarding phb group.
Internet RFC 2597

2. Jacobson, V., Nichols, K., Poduri, K.: An expedited forwarding phb. Internet RFC
2598

3. Braden, R., Clark, D., Shenker, S.: Integrated services in the internet architecture.
Internet RFC 1633

4. Wroclawski, J.: Specification of controlled-load network element service, Internet
RFC 2211 (1997)

5. Boudec, J.-Y.L.: Rate adaptation, congestion control and fairness (2008),
http://ica1www.epfl.ch/PS files/LEB3132.pdf

6. Abraham, S., Kumar, A.: A stochastic approximation approach for max-min fair
adaptive rate control of abr sessions with mcrs. In: Proceedings of IEEE INFO-
COM, New York, NY (March 1999)

7. Charny, A.: An algorithm for rate allocation in a packet switching network with
feedback, M.S. thesis, Massachusetts Institute of Technology (May 1994)

8. Hou, Y.T., Tzeng, H.H.Y., Panwar, S.S.: A generalized max-min rate allocation
policy and its distributed implementation using the abr flow control mechanism.
In: Proceedings of IEEE Infocom, San Francisco, CA (March 1998)

9. Ros, J., Tsai, W.K.: A general theory of constrained max-min rate allocation for
multicast networks. In: IEEE International Conference on Networks, Singapore
(2000)

10. Sarkar, S., Ren, T., Tassiulas, L.: Achieving fairness in multicasting with almost
stateless rate control. In: Proceedings of the conference on Scalability and Traffic
Control in IP Networks, SPIE, ITcom (2002)

11. Kim, Y., Tsai, W.K., Iyer, M., Ros, J.: Minimum rate guarantee without per-
flow information. In: ICNP 1999: Proceedings of the Seventh Annual International
Conference on Network Protocols, Washington, DC, USA, p. 155. IEEE Computer
Society, Los Alamitos (1999)

12. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

13. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science 1997(4) (1997)

14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

http://ica1www.epfl.ch/PS_files/LEB3132.pdf

172 J.A. Cobb and M.G. Gouda

15. Stoica, I., Zhang, H.: Providing guaranteed services without per-flow management.
In: Proc. of the ACM SIGCOMM Conference (1999)

16. Zhang, Z., Duan, Z., Gao, L., Hou, Y.T.: Decoupling QoS control from core routers:
A novel bandwidth architecture for scalable support for guaranteed services. In:
Proc. ACM SIGCOMM Conference (2000)

17. Kaur, J., Vin, H.M.: Core-stateless guaranteed rate scheduling algorithms. In: Proc.
of the IEEE INFOCOM Conf. (2001)

18. Kaur, J., Vin, H.M.: Core stateless guaranteed throughput networks. In: Proc. of
the IEEE INFOCOM Conf. (2003)

19. Callon, R., Doolan, P., Feldman, N., Fredette, A., Swallow, G., Viswanathan,
A.: A framework for multiprotocol label switching, Internet draft draft-ietf-mpls-
framework-02.txt (1997)

20. Cobb, J.: Preserving quality of service without per-flow state. In: Proc. IEEE
International Conference on Network Protocols (ICNP) (November 2001)

21. Cobb, J.: Scalable quality of service across multiple domains. Computer Commu-
nications 28(18), 1997–2008 (2005)

22. Cobb, J.A., Gouda, M.G.: Stabilization of max-min fair networks without per-flow
state, Department of Computer Science Technical Report, The University of Texas
at Dallas (September 2008)

Convergence Time Analysis of Self-stabilizing

Algorithms in Wireless Sensor Networks with
Unreliable Links

Hirotsugu Kakugawa� and Toshimitsu Masuzawa��

Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{kakugawa,masuzawa}@ist.osaka-u.ac.jp

Abstract. Wireless sensor network is a set of many tiny sensor nodes
each of which consists of a microprocessor with sensors and wireless
communication device. Because centralized control is hard to achieve
in a large scale sensor network, self-∗ is a key concept to design such a
network. In this paper, as one of self-∗ properties, we investigate self-
stabilization algorithms which is a promising theoretical background for
wireless sensor network protocols. T. Herman [Procs. International Work-
shop of Distributed Computing, 2003] proposed a transformation scheme
of self-stabilizing algorithm in abstract computational model to sensor
network model. However, it is not known that whether expected conver-
gence time of transformed algorithms is finite or not. We show upper
bound of expected convergence time of some self-stabilizing algorithms
in explicit formulas.

Keywords: Wireless sensor network, self-stabilization, self-organization,
probabilistic self-stabilization, convergence time.

1 Introduction

1.1 Background

Wireless sensor network is a set of large number of sensor nodes, each of which
is equipped with wireless communication device and sensors to monitor envi-
ronment. Software design for wireless sensor networks is challenging because
resource on each node is limited and wireless communication is unreliable. In
addition, a set of sensor nodes in operation changes because new sensor nodes
are deployed in ad-hoc manner and a sensor node stop working when its bat-
tery is exhausted. Therefore, in design of dynamic distributed system such as
� This work is supported in part by Grant-in-Aid for Scientific Research ((B)20300012

and (B)17300020) of JSPS, “Special Coordination Funds for Promoting Science and
Technology: Yuragi Project” of MEXT, and Kayamori Foundation of Informational
Science Advancement.

�� This work is supported in part by Grant-in-Aid for Scientific Research ((B)19300017)
of JSPS, and Global COE (Centers of Excellence) Program of MEXT.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 173–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 H. Kakugawa and T. Masuzawa

wireless sensor network, self-∗ (self-organizing, self-configuring, self-managing,
self-optimizing, self-repairing, etc)̇ is a key concept for system design.

Different from ad-hoc approaches, we take a formal approach to design dis-
tributed algorithms for wireless sensor networks because formal approach gives us
theoretical foundation for design, verification and performance analysis. Specif-
ically, we adopt self-stabilization as a theoretical background for self-organizing
and self-repairing distributed systems. Self-stabilization is a theoretical frame-
work for non-masking fault-tolerant distributed systems [1,2,3]. Specifically, self-
stabilizing distributed systems have the following important advantages for large
and complex modern distributed systems, and hence different from ad-hoc de-
sign approaches, self-stabilization is one of formal backgrounds for system design
with self-∗ property of wireless sensor network.

1.2 Related Works

Although self-stabilization is undoubtedly important in distributed systems, de-
sign and verification of a self-stabilizing distributed algorithm is a hard task
because such a system must recover from arbitrary soft errors. That is, we
must assume that, at the beginning of computation, local variables of nodes
and contents of messages may be corrupted arbitrarily. By this reason, many
self-stabilizing distributed algorithms are designed under abstract computational
model (coarse-grained atomic action with distributed shared memory) for sim-
plicity of design and verification. However, big semantic gap lies between such an
abstract computational model and real distributed systems (fine-grained atomic
action in parallel with message passing). Several model transformation meth-
ods that fill the gap have been proposed so far to execute such self-stabilizing
distributed algorithms in real distributed systems.

– Transformation with exact model equivalence. Transformation in this cate-
gory guarantees that execution of a transformed algorithm is exactly the
same as executing under the abstract computational model. A transforma-
tion proposed in [4] is based on optimistic concurrency control from database
theory, and update of a local state of a node is considered as a transaction.
We call transformation of this category heavyweight because runtime over-
head is large to guarantee model equivalence.

– Transformation with inexact model equivalence. Transformation in this cate-
gory does not guarantee model equivalence, and a transformed algorithm
may produce execution that never occurs in the abstract computational
model. Transformations proposed in [5,6,7] are based on caching of neighbor
states without any cache coherency protocols to simulate distributed shared
memory. We call transformation of this category lightweight because runtime
overhead is small.

We review lightweight transformation proposed in [5,6,7]. In each method,
each node maintains a cache of neighbor node, and each node vi sends its lo-
cal state to each neighbor node vj to update cache of local state of vi at vj

Convergence Time Analysis of Self-stabilizing Algorithms 175

immediately [5] or periodically [6,7]. In [5], Huang, Wuu and Tsai propose a
lightweight transformation for general networks with reliable FIFO communica-
tion links, and this is the first paper that proposes lightweight transformation. In
[6], Herman presents a lightweight transformation for wireless sensor networks.
He assumes that each node has correct cache of each neighbor node in initial
configuration, and he also assumes communication is reliable. By these assump-
tions, correctness of each cache is maintain by sending new local state when
a node updates its local state. However, these two assumption is unrealistic in
sensor networks.

In [7], under assumption that each node receives a packet from neighbor with
probability 0 < p < 1, Turau and Weyer show that lightweight transformation by
[6] yields a probabilistically self-stabilizing algorithm that converges to legitimate
configuration with probability 1 from initial configuration in which caches are
incorrect. Unfortunately, the authors do not show whether expected convergence
time is finite or not.

1.3 Contribution of This Paper

In this paper, we show upper bound of expected convergence time of some
self-stabilizing algorithms in sensor networks obtained by lightweight transforma-
tion. To the best knowledge of the authors, expected convergence time analysis
for lightweight transformation is unknown. Main contribution of this paper is
two-fold.

– We propose a general methodology to derive upper bound on expected con-
vergence time of self-stabilizing algorithms by lightweight transformation
(Theorem 1). In particular, we assume that each node fails to receive a
packet with some probability even if a system in converging, which makes
convergence time analysis non-trivial.

– As a case study, we show expected convergence time analysis of some self-
stabilizing algorithms and give (finite) upper bounds in explicit formulas.

Organization of this paper is as follows. In section 2, we descrive compu-
tational models and self-stabilization. In section 3, lightweight transformation
scheme for our implementation is presented. In section 4, we show some upper
bounds on expected convergence time of self-stabilizing algorithms. In section 5,
we give concluding remarks of this paper.

2 Preliminary

2.1 Abstract Computational Model

Let V = (v1, v2, ..., vn) be a set of nodes and E ⊆ V × V be a set of bidi-
rectional communication links in a distributed system. Then, the topology of
the distributed system is represented as an undirected graph G = (V, E). The
number of nodes is denoted by n. We assume that G is a connected and simple

176 H. Kakugawa and T. Masuzawa

graph. By Ni, we denote a set of neighbor nodes of vi. By vi.x, we denote local
variable x at node vi. A set of local variables defines local state of a node. Let
vi.q be the local state (tuple of all local variables) of node vi ∈ V . A tuple of
local states of nodes (v1.q, v2.q, ..., vn.q) forms a configuration (global state) of a
distributed system, and let Γ be a set of all configurations.

An algorithm of each node vi is given as a set of guarded commands:

∗[Grd1 → Act1 � Grd2 → Act2 � Grd3 → Act3 � · · ·]

As a communication model, we assume that each node can read local states
of neighbor nodes, which is called the state reading model. Although a node can
read local state of neighbor nodes, it can update its local state only.

Each Grdj (j = 1, 2, ...) is called a guard and it is a predicate on vi’s local
state and local states of its neighbor nodes. Each Actj is called an action which
updates local state of vi, and the next local state is computed from current
local state of vi and those of its neighbor nodes. We say that vi is enabled in
configuration γ if and only if at least one guard of vi is true in γ.

An atomic step of each node vi consists of the following three internal sub-
steps: (1) read local states of neighbor nodes and evaluate guards, (2) execute
a command that is associated to a true guard, if any, and (3) update its local
state. Following two types of schedulers are often assumed in the literature of
self-stabilizing distributed algorithms. (1) The central daemon: At each step,
only one enabled node is selected arbitrarily, and a selected node executes an
atomic step. (2) The distributed daemon: At each step, arbitrary non-empty set
of enabled nodes are selected, and selected nodes execute their atomic steps in
parallel.

For any configuration γ, let γ ′ be any configuration that follows γ. Then, we
denote this transition relation by γ → γ′. For any configuration γ0, a computation
e starting from γ0 is a maximal (possibly infinite) sequence of configurations
e = γ0, γ1, γ2, ... such that γt → γt+1 for each t ≥ 0.

2.2 Computational Model for Sensor Networks

In this paper, we adopt the following computational model for sensor networks.
Each node communicates via wireless communication device, however, it is

assumed that packet loss or collisions cannot be detected by any node. We assume
that message delay is zero because two nodes directly communicate with each
other via wireless communication. A set of nodes that are in the communication
range of vi forms a set of neighbor Ni of vi, and it is assumed that a variable
Ni is available at vi for each node vi. It is assumed that communication is
bidirectional, i.e., vk ∈ Ni if and only if vi ∈ Nk. Each packet transmitted by
node vi is locally broadcast to nodes Ni. Each packet by vi is received by each
neighbor node vk ∈ Ni independently with probability p, conversely, each node
vk ∈ Ni drops a packet from vi independently with probability 1− p. Note that,
when vi transmits a packet, vj ∈ Ni may receive and vk ∈ Ni may not receive
it probabilistically. Each node is equipped with a local clock and speed of local

Convergence Time Analysis of Self-stabilizing Algorithms 177

clocks of nodes are the same, however, we do not assume that clock values are
not synchronized.

Each node takes an action on receive event or timer event. We assume that
timer events of nodes do not occur simultaneously.

– Receive event: On event that a node successfully receives a packet, a message
handler of a node is invoked atomically.

– Timer event: On event that an interval timer of a node ticks, a timer handler
of a node is invoked atomically.

2.3 Self-stabilization

Self-stabilization property is defined as an ability to converge to a correct system
operation in finite time from arbitrary initial configuration. Let S be a 3-tuple
S = (Γ, Λ, →), where Γ is a finite set, Λ is a subset of Γ , and → is a mapping from
Γ to Γ . A 3-tuple S = (Γ, Λ, →) can be viewed as a transition system defined
by given network topology and algorithm. The concept of self-stabilization is
formally defined as follows [1].

Definition 1. A system S = (Γ, Λ, →) is self-stabilizing with respect to Λ ⊆
Γ if and only if the following two conditions hold: (1) Convergence: Starting
from arbitrary configuration, configuration eventually becomes one in Λ, and (2)
Closure: For any configuration λ ∈ Λ, any configuration γ such that λ → γ is
also in Λ. Each λ ∈ Λ is called a legitimate configuration. and Λ is called a set
of legitimate configurations. �

A configuration just after some soft errors occur or just after node removal
and/or deployment (i.e., change of Ni values) occur is considered as a new initial
configuration, and self-stabilization guarantees convergence from such a config-
uration.

3 Lightweight Transformation Scheme

3.1 Transformation Algorithm

Outline of our lightweight transformation scheme is shown in Figure 1, which
is essentially the same as the ones proposed in [5,6,7], and it converts a self-
stabilizing algorithm in the abstract computational model (defined in section 2.1)
into a program in the sensor network model (defined in section 2.2).

Let vi.q be a (set of) local variable(s) of node vi in the original algorithm.
Then, in a transformed algorithm, each vi maintains a cache vi.C[vk, q] of vk.q
for each neighbor node vk ∈ Ni. Algorithm logic in a transformed algorithm is
kept unchanged except each access to vk.q in the original algorithm is replaced
by an access to its cache vi.C[vk, q]. Periodically, by interval timer event, each
node vi locally broadcasts a packet that contains its local variable(s) vi.q. We
call such a message packet as state packet. Each node neighbor node receives

178 H. Kakugawa and T. Masuzawa

Local variables of node vi

vi.q — the (set of) local variable(s) of original algorithm;
vi.C[vk, q] — cache of vk.q for each neighbor vk ∈ Ni;

Code of node vi

on timer :
transmit 〈vi.q〉;

on message 〈q〉 from vk ∈ Ni :
vi.C[vk, q] := q;
Update vi.q by running guarded commands of original algorithm

except access to each vk.q ∈ Ni is replaced by vi.C[vk, q];

Fig. 1. Lightweight transformation scheme

a state packet independently with probability p. When node vi receives a state
packet that contains vj .q from its neighbor vj , it updates vi.C[vj , q] to cache the
latest value of vj .q.

It is important to remember that the lightweight transformation scheme does
not preserve the abstract computational model because update of vi.q by vi is not
immediately observable by its neighbor nodes. That is, an execution which never
occurs in the abstract computational model may occur in a transformed algorithm
executed in real wireless sensor networks. However, in this paper, we show that
transformed algorithm probabilistically converges to legitimate configuration by
showing explicit upper bound on the expected number rounds to converge.

3.2 Legitimate Configurations

We describe definition of legitimate configurations of a transformed algorithm.
Let SA = (ΓA, ΛA, →A) be a self-stabilizing system in the abstract computa-
tional model which is non-reactive, and let SS = (ΓS , ΛS , →S) be a transformed
system in the sensor network model. A set of configurations ΓS is obtained by
augmenting each configuration γA ∈ ΓA in such a way that a state of a node
vi in γS ∈ ΓS is a tuple of (1) the values of local variables of node vi in γA

and (2) the value of local cache vi.C[vk, x] for each neighbor vk ∈ Ni and local
variable x.

For any configuration γS ∈ ΓS , we say γS is cache coherent for node vi if and
only if ∀vj ∈ Ni : vj .C[q, vi] = vi.q for each local variable q, i.e., each neighbor vj

of vi caches the current local state of node vi. We say a configuration γS is cache
coherent if and only if γS is cache coherent for each node vi [6]. We say node
vi is cached-state consistent in configuration γS if and only if vi is not enabled
(i.e., no true guard) in γS . Intuitively, in a cached-state consistent configuration,
each node need not update its local variable according to its cache of neighbor
states, and note that cached-state consistency does not imply cache coherency.

A set of legitimate configurations ΛS in sensor network model is defined from
SA = (ΓA, ΛA, →A) as follows. A configuration γS ∈ ΓS is in ΛS if and only

Convergence Time Analysis of Self-stabilizing Algorithms 179

if γS is cache coherent and each node vi ∈ V is cached-state consistent in γS .
Note that, in sensor network model, a legitimate configuration λS is stable under
packet loss because configuration never change on such events. In other words,
packet loss does not break legitimacy of configuration.

4 Convergence Time Analysis in Sensor Networks

First we derive a useful formula that will be used in our analysis. Let k be any
integer such that k ≥ 1. For each i = 1, 2, ..., k, let Zi(p) be a random variable
distributed according to the geometric distribution with parameter p. We define
a random variable Z(k, p) by

Z(k, p) = max
1≤i≤k

{Zi(p)}, (1)

and expectation of Z(k, p) is

E[Z(k, p)] =
∞∑

t=1

t · Pr[Z(k, p) = t]. (2)

In [8], Szpankowski and Rego derive non-recurrent expression for E[Z(k, p)],
and Figure 2 shows graph of E[Z(k, p)] for some p.

E[Z(k, p)] = −
k∑

k′=1

(−1)k′ kCk′

(1 − (1 − p)k′)
(3)

Informally, the random variable Z(k, p) is defined as follows.

We have k coins, and head (tail) of each coin appears with probability p
(resp., 1− p). At the first iteration, we flip all of the k coins at the same
time. In the second iteration, we flip only tail coins by the first iteration.
In the third iteration, we flip only tail coins by the second iteration.
We repeat such coin flips until no coin is tail. Let Z(k, p) be a random
variable for the total number of iterations.

In our problem setting, the definition of the random variable Z(k, p) and its
expectation E[Z(k, p)] can be interpreted as follows.

– If node vi transmits its state packet E[Z(δi, p)] times, each neighbor of vi is
expected to receive the state packet at least once.

– In our transformation setting, each node transmits its state packet in every
round. Thus, in E[Z(δi, p)] expected rounds, each neighbor of vi is expected
to receive the state packet of vi at least once.

– Conversely, in E[Z(δi, p)] expected rounds, for each neighbor vj ∈ Ni, vi is
expected to receive a state packet of vj at least once.

– In E[Z(2|E|, p)] rounds, all the node are expected to receive state packets at
least once from all neighbors.

180 H. Kakugawa and T. Masuzawa

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

E
[Z

(k
,p

)]

k

p=0.50
p=0.60
p=0.70
p=0.80
p=0.90
p=0.95
p=0.99

Fig. 2. Graph of E[Z(k, p)]

4.1 On Upper Bound of Convergence Time

We show general framework for deriving convergence time analysis of self-
stabilizing systems for the sensor network model.

Let S = (Γ, Λ, →) be a self-stabilizing algorithm (in either abstract and sensor
network models). Let F be a predicate on configurations Γ such that F (γ) ⇔
γ ∈ Λ, that is, F (γ) is true if and only if γ is a legitimate configuration.

For given S = (Γ, Λ, →), let K be some integer and let Fi be a predicate on
configuration for each i = 1, 2, ..., K such that

– For each i = 1, 2, ..., K, starting from any configuration in which Fi−1 is
true1, S eventually reaches a configuration in which Fi is true,

– Fi is closed, that is, for any configuration γ ∈ Γ such that Fi(γ), Fi(γ′) holds
for any configuration γ′ such that γ → γ′, and

– F = F1 ∧ F2 ∧ · · · ∧ FK .

Such a set of predicates {Fi : i = 1, 2,, K} is called a convergence stair of S
[9]. Intuitively, starting from any configuration, the system gradually increases
satisfied predicates, and finally, all predicates are satisfied which implies config-
uration is legitimate.

Let {Fi : i = 1, 2, ..., K} be a convergence stair of S, and let T (γ, Fi) be a
random variable for the number of execution steps (rounds2) from configuration
γ to some configuration in which Fi is true. Then, we define

τ(Fi, Fj) = max
γ∈Γ s.t.

Fi(γ) is true

{
E[T (γ, Fj)]

}
. (4)

1 We assume that F0(γ) is true for any γ ∈ Γ .
2 For the sake of simplicity, we assume that configuration transitions within a single

round in the sensor network model are collapsed into a single transition.

Convergence Time Analysis of Self-stabilizing Algorithms 181

Note that τ(Fi, Fj) is the upper bound of the expected number of executions
from a configuration γi such that Fi(γi) is true to any configuration γj such that
Fi(γj) is true.

Theorem 1 below states that upper bound on expected convergence time of a
self-stabilizing system is the sum of expected convergence time for each conver-
gence step of predicate of a convergence stair.

Theorem 1. For any self-stabilizing system S = (Γ, Λ, →) and let {Fi : i =
1, 2, ..., K} be a convergence stair of S. Then, we have

τ(true, FK) ≤
K∑

i=1

τ(Fi−1, Fi). (5)

In the following subsections, we implicitly use Theorem 1 and convergence
stairs to derive upper bound of expected convergence time of transformed self-
stabilizing algorithm.

4.2 Spanning Tree Algorithm BFS

Self-stabilizing algorithm for breadth-first search (BFS) spanning tree with a
distinguished node under central daemon is shown in Figure 3 [10] 3. We call
this algorithm BFS in this paper. In BFS, the distinguished node vR plays as
the root of BFS tree. Each node vi maintains a local variable for the distance
vi.d from the root node and parent node vi.f in a BFS tree from its neighbor
nodes.

Convergence of BFS proceeds from the root node. The root node vR eventu-
ally fixes its local variables (vR.d = 0 and vR.f = vR), Local variables of other
nodes are maintained so that its parent node has the smallest distance from the
root. Basically, convergence proceeds from the root node to other nodes in the
order of the hop distance from the root node. However, this convergence scenario
is interfered by some nodes that incorrectly hold small hop distanced from the
root node. Thus, our upper bound is based on this observation.

Theorem 2. For any network G with packet transmission probability p, expected
convergence time of Algorithm BFS is bounded by

T (BFS, G, p) = (2D + 1) · E[Z(2|E|, p)] (6)

rounds.

Proof. The upper bound is derived in two steps. First we derive upper bound
on the expected number of rounds to reach a configuration in which no node
vi holds smaller value than its hop distance from the root node vR, i,e, vi.d <

3 Algorithm presented in Figure 3 is modification of the algorithm presented in [10]
in such a way that Figure 3 does not use the number of nodes in the algorithm and
two guarded-commands are merged into one.

182 H. Kakugawa and T. Masuzawa

Local variable of node vi

vi.d : integer — the distance of vi from the root node
vi.f ∈ Ni — parent node of vi in a BFS tree

Guarded commands of the root node vR

∗[// GC0: Set root values
(vR.d �= 0) ∨ (vR.f �= vR)

→ vR.d := 0; vR.f := vR

]
Guarded commands of non-root node vi

∗[// GC1: Select a parent
(vi.d �= min{vj .d : vj ∈ Ni} + 1) ∨ (vi.f �= vk s.t. vk.d = min{vj .d : vj ∈ Ni})

→ vi.d := min{vj .d : vj ∈ Ni} + 1;
vi.f := vk s.t. vk.d = min{vj .d : vj ∈ Ni};

]

Fig. 3. Algorithm BFS [10]

dist(vR, vi). We will show that expected number of rounds for this is bounded by
D ·E[Z(2|E|, p)] rounds. Then, convergence proceeds from the root node to other
nodes in the order of hop distance from the root node. We show that expected
number of rounds for this is bounded by (D + 1) ·E[Z(2|E|, p)] rounds. In total,
we have the upper bound (2D + 1) · E[Z(2|E|, p)].

First, we assume that any initial configuration γ0 in which there is a node vi

such that vi.d < dist(vR, vi). For any configuration γ, we denote, by d(γ), the
smallest value of vi.d among such nodes (if any) in configuration γ. Let γ1 be a
configuration such that state packet of each node vi is successfully received by
each neighbor node of vi after γ0.

Suppose that, in configuration γ1, there exists a node, say vj , such that vj .d <
dist(vR, vj). Then, we claim that d(γ0) < d(γ1) holds. Let vk be any node in
γ1 such that vk.d = d(γ1). Then, vk receives state packet at least once from
each neighbor node from γ0 to γ1. Because we have vk.d < dist(vR, vk) in γ1
by assumption, each received value from any neighbor is larger than or equal to
d(γ0). Hence, by algorithm definition, the value of vk.d in γ1 is larger than d(γ0),
i.e., d(γ0) < d(γ1) holds.

Repeating the same observation D times, we have configuration γD in which
d(γD) ≥ D holds (or d(γD) is undefined) within at most D · E[Z(2|E|, p)] ex-
pected rounds.

Next, we estimate upper bound on the expected number of rounds for con-
vergence process from the root node to other nodes. Let

W� = {vj ∈ V : dist(vR, vj) = �}, and

M� =
∑

vj∈W�

|Nj |.

By definition, W0 = NR, |W0| = |NR| = M0, and M� ≤ 2|E| for any �.
The state packet of the root node vR is received at least once by each node vj ∈

W0 within expected E[Z(M0, p)] rounds, and hence its local variables vj .d and

Convergence Time Analysis of Self-stabilizing Algorithms 183

vj .f are fixed and remain unchanged in the following execution. Then, the state
packet of each node vj ∈ W1 is received at least once by each node vj ∈ M1 within
expected E[Z(M1, p)] rounds, and hence its variables vj .d and vj .f are fixed
and remain unchanged in the following execution. Repeating this observation,
variables vj .d and vj .f for each process vj ∈ V are fixed within

D∑
�=0

E[Z(M�, p)] ≤ (D + 1) · E[Z(2|E|, p)]

expected rounds, and convergence is done.
In total, we have the bound (2D + 1) · E[Z(2|E|, p)].

4.3 Maximal Independent Set Algorithm MIS

Self-stabilizing algorithm for maximal independent set (MIS) with no node iden-
tifier under central daemon is shown in Figure 4 [11]. We call this algorithm
MIS in this paper.

Definition 2. For any γ configuration of MIS, γ is cached-state consistent if
and only if, for each node vi,

– vi.x = 0 implies vi.C[vj , x] = 1 for some vj ∈ Ni, and
– vi.x = 1 implies vi.C[vj , x] = 0 for any vj ∈ Ni.

Note that no node is enabled in a cached-state consistent configuration γ.

Lemma 1. Let γ be any cached-state consistent configuration in which there
exists at least one node vi such that vi.x = 1. Then, in any configuration γ′ that
follows γ, there is at least one node, say vj, such that vj .x = 1.

Lemma 2. Let γ0 be any cached-state consistent configuration in which vi.x = 0
for any node vi. Then, expectation of the round number in which a node, say vj,
such that vj .x = 1 appears for the first time is bounded by E[Z(δ, p)].

Local variable of node vi

vi.x ∈ {0, 1} — vi.x = 1 iff vi is a member of MIS
Guarded commands of node vi

∗[// GC1: Join MIS.
(vi.x = 0) ∧ (∀vk ∈ Ni[vk.x �= 1])

→ vi.x := 1;
// GC2: Leave MIS.

� (vi.x = 1) ∧ (∃vk ∈ Ni[vk.x = 1])
→ vi.x := 0;

]

Fig. 4. Algorithm MIS [11]

184 H. Kakugawa and T. Masuzawa

Theorem 3. For any network G with packet transmission probability p, expected
convergence time of Algorithm MIS is bounded by

T (MIS, G, p) = E[Z(δ, p)] + β(G)/p∆ + E[Z(2|E|, p)] (7)

rounds, where β(G) is the independence number of graph G.

Proof. Starting from any initial configuration, a node, say vi, such that vi.x = 1
appears within E[Z(δ, p)] expected rounds by Lemma 2. Then, by Lemma 1,
there is at least one node, say vj , such that vj .x = 1 in any configuration.
We will show later that expected rounds so that each node computes MIS is
at most β(G)/p∆. Then, within E[Z(2|E|, p)] expected rounds, cache at each
node becomes consistent. Thus, we have upper bound E[Z(δ, p)] + β(G)/p∆ +
E[Z(2|E|, p)].

Now we show the bound of expectation β(G)/p∆. Because there is at least one
node vi such that vi.x = 1 at each round by Lemma 1, we observe such a node
at each round. With probability p|Ni| ≥ p∆, a packet sent by vi is successfully
received by all the neighbors Ni simultaneously. When this event occur, each
vj ∈ Ni sets vj .C[vi, x] = 1 and, as a result, we have vj .x = 0. Then, the values
vi.x = 1 and vj .x = 0 for each vj ∈ Ni are fixed in any configuration thereafter
because vi.C[vj , x] = 0 ∧ vj .C[vi.x] = 1 ∧ vj .x = 0 for any vj ∈ Ni.

By expectation of geometric distribution, some node vi such that vi.x = 1
and its neighbors fix their values of x at every expected 1/p|Ni| ≤ 1/p∆ rounds.
Because the number of MIS nodes is at most β(G), the expected number of
rounds to compute MIS is bounded by β(G)/p∆.

We have better analysis in case the network is complete.

Theorem 4. For any complete network K with packet transmission probability
p, expected convergence time of Algorithm MIS is bounded by

T (MIS, K, p) = E[Z(δ, p)] + 2E[Z(n − 1, p)] (8)

rounds.

Proof. By the same reason discussed in the proof of Theorem 3, E[Z(δ, p)] +
E[Z(n − 1, p)] rounds are necessary to bound the number of rounds at the
beginning and the end of converging computation. Below we show a bound
E[Z(n − 1, p)].

To show a bound E[Z(n − 1, p)], we assume a configuration in which there is
at least one node vi such that vi.x = 1. Because there is at least one node vi

such that vi.x = 1 in any configuration by Lemma 1, we observe such a node at
each round.

Let n0(≤ n) be the number of nodes vi such that vi.x = 1. At each round,
a node, say vi such that vi.x = 1, sends a state packet. Other nodes receive it
with probability p, and fail to receive it with probability 1 − p. Our goal is to
derive the number of rounds such that only one node with x = 1 remains.

Convergence Time Analysis of Self-stabilizing Algorithms 185

To evaluate the upper bound of the expected number rounds, without loss of
generally, we can assume that, for some node vi, only vi sends state packet at
every round. Then, for other node vj , the value of vj .x becomes 0 by successfully
receiving a state packet of vi which occurs with probability p, and the value of
vj .x remains 0 thereafter. Thus, the upper bound of the expected number of
rounds such that all the nodes except vi to have x = 0 is given by E[Z(n−1, p)].
That is, after E[Z(n− 1, p)] expected rounds, only vi is a node such that x = 1.

The analysis above applies for the self-stabilizing algorithm for maximal in-
dependent set (MIS) proposed in [12].

4.4 Maximal Independent Set Algorithm CDS

Self-stabilizing algorithm for connected dominating set (CDS) for node clustering
with unique node identifier under central daemon is shown in Figure 5 [13]. We
call this algorithm CDS in this paper. It is assumed that a spanning tree over
a network is given by constants vi.d (distance from the root) and vi.f (parent
node in the tree) for each node vi, and a node vi is the root node of a given
spanning tree if and only if vi.d = 0 and vi.f = vi. Each node vi maintains two
local variables vi.x and vi.y. Node vi is a member of CDS if and only if vi.x = 1,
and local variable vi.y is for internal use.

Constant
vi.f : parent node vi in a spanning tree;
vi.d: distance of vi from the root of a spanning tree;

Local variable of node vi

vi.x ∈ {0, 1} — vi.x = 1 iff vi is a member of CDS;
vi.y ∈ {0, 1} — (internal) vi.y = 1 iff vi is a member of MIS;

Guarded commands of node vi

∗[// GC1: The root joins MIS and CDS.
(di = 0) ∧ ((vi.x = 0) ∨ (vi.y = 0))

→ vi.x := 1; vi.y := 1;
// GC2: Non root joins MIS.

� (vi.d > 0) ∧ (vi.y = 0) ∧ (∀vj ∈ Ni : vj .d > vi.d ∨ vj .y = 0)
→ vi.y := 1;

// GC3: Non root leaves MIS.
� (vi.d > 0) ∧ (vi.y = 0) ∧ (∃vj ∈ Ni : vj .d ≤ vi.d ∧ vj .y = 1)

→ vi.y := 1;
// GC4: Non root joins CDS.

� (vi.d > 0) ∧ ¬Grd2 ∧ ¬Grd3 ∧ (vi.x = 0) ∧ (∃vj ∈ Ni : vj .f = vi ∧ vj .y = 1)
→ vi.x := 1;

// GC5: Non root leaves CDS.
� (vi.d > 0) ∧ ¬Grd2 ∧ ¬Grd3 ∧ (vi.x = 1) ∧ (∀vj ∈ Ni : vj .f �= vi ∨ v.j .y = 0)

→ vi.x := 0;
]

Fig. 5. Algorithm CDS [13]

186 H. Kakugawa and T. Masuzawa

We denote, by vR, the root node of a given spanning tree. Convergence pro-
ceeds as follows. First, the value of vR.x and vR.y is fixed by the root node vR.
Then, for each � = 1, 2, .. in increasing order, nodes whose distance from the root
is � decide their values of local variable y. Finally, each node decides the values
of their local variable x.

Theorem 5. For any network G with packet transmission probability p, expected
convergence time of Algorithm CDS is bounded by

T (CDS, G, p) = E[Z(∆, p)] + D · T (MIS, G, p) + E[Z(2|E|, p)] (9)

rounds, provided a given spanning tree is a depth-first search tree, where D is
the height of the tree.

Proof. First, state packet of the root node vR is received by every neighbor nodes
of vR. The expected number of rounds for this is E[Z(|NR|, p)] rounds, which is
bounded by E[Z(∆, p)].

Next, for each � = 1, 2, ..., D, in this order, a set of nodes whose distance from
the root node is � in a spanning tree computes MIS to decide the value of vi.y, and
the value of vi.y is transmitted to all of their neighbors via state packet. Expected
number of rounds for this step is trivially bounded by T (MIS, G, p) by Theorem 3.
Because MIS computation is done for each � = 1, 2, ..., D, at most D ·T (MIS, G, p)
expected rounds are required to fix the value of vi.y for each node vi.

Finally, each node vi fixes the value of vi.x according to the value of vi.y.
The value of vi.x is transmitted to its neighbor nodes in E[Z(2|E|, p)] expected
rounds, and the system converges.

In total, we have at most E[Z(∆, p)]+D·T (MIS, G, p)+E[Z(2|E|, p)] expected
rounds to converge.

5 Conclusion

In this paper we present convergence time analysis of self-stabilizing distributed
algorithms for sensor network obtained by lightweight transformation. Although
previous works show only that a transformed algorithm converges with proba-
bility one for enough long time and do not show any explicit convergence time,
this paper presents non-trivial and explicit upper bound on convergence time.
Because our upper bound may not be tight, derivation of better upper bound
is the next challenge. Our next project is to compare with our upper bound,
simulation results and measurement with real sensor network.

References

1. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Communica-
tions of the ACM 17(11), 643–644 (1974)

2. Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1), 45–67 (1993)
3. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

Convergence Time Analysis of Self-stabilizing Algorithms 187

4. Mizuno, M., Kakugawa, H.: A transformation of self-stabilizing programs for dis-
tributed computing environments. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG
1996. LNCS, vol. 1151, pp. 304–321. Springer, Heidelberg (1996)

5. Huang, S.T., Wuu, L.C., Tsai, M.S.: Distributed execution model for self-stabilizing
systems. In: Proceedings of the 14th International Conference on Distributed Com-
puting Systems (ICDCS), pp. 432–439 (1994)

6. Herman, T.: Models of self-stabilization and sensor networks. In: IWDC 2003.
LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

7. Turau, V., Weyer, C.: Randomized self-stabilizing algorithms for wireless sensor
networks. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124,
pp. 74–89. Springer, Heidelberg (2006)

8. Szpankowski, W., Rego, V.: Yet another application of a binomial recurrence, order
statistics. Computing 43, 401–410 (1990)

9. Gouda, M.: The triumph and tribulation of system stabilization. In: Helary, J.-M.,
Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972. Springer, Heidelberg (1995)

10. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first
trees. Information Processing Letters 41, 109–117 (1992)

11. Shukla, S., Rosenkrantz, D., Ravi, S.: Observation on self-stabilizing graph al-
gorithms for anonymous networks. In: Proceedings of the Second Workshop on
Self-Stabilizing Systems, WSS (1995)

12. Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm
for the maximal independent set problem. In: Proceedings of the 3rd International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), pp. 70–74 (2002)

13. Kamei, S., Kakugawa, H.: A self-stabilizing distributed approximation algo-
rithm for the minimum connected dominating set. In: Proceedings of the 9th
IPDPS Workshop on Advances in Parallel and Distributed Computational Models,
APDCM (2007)

14. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Information Processing Let-
ters 103(3), 88–93 (2007)

15. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing
spanning trees. Information Processing Letters 39, 147–151 (1991)

Self-stabilizing Mobile Robot Formations

with Virtual Nodes

Seth Gilbert1, Nancy Lynch2, Sayan Mitra3,�, and Tina Nolte2

1 Ecole Polytechnique Fédérale, Lausanne
2 Massachusetts Institute of Technology

3 University of Illinois at Urbana-Champaign

Abstract. In this paper, we describe how virtual infrastructure can be
used to coordinate the motion of mobile robots in a 2-dimensional plane
in the presence of dynamic changes in the underlying mobile ad hoc net-
work, i.e., nodes joining, leaving, or failing. The mobile robots cooperate
to implement a VSA Layer, in which a virtual stationary automaton
(VSA) is associated with each region of the plane. The VSAs coordi-
nate among themselves to distribute the robots as needed throughout
the plane. The resulting motion coordination protocol is self-stabilizing,
in that each robot can begin the execution in any arbitrary state and at
any arbitrary location in the plane. In addition, self-stabilization ensures
that the robots can adapt to changes in the desired formation.

1 Introduction

We study the problem of coordinating autonomous mobile devices. Consider, for
example, firefighting robots deployed in forests and other fire-prone wilderness
areas. Significant levels of coordination are required in order to combat the fire:
the fire should be surrounded, “firebreaks” should be created, and it should be
doused with water; in additiona, the firefighters may need to direct the actions
of (potentially autonomous) helicopters carrying water. Similar scenarios arise in
a variety of contexts, including search and rescue, emergency disaster response,
remote surveillance, and military engagement, among many others. In fact, au-
tonomous coordination has long been a central problem in mobile robotics.

We focus on a generic coordination problem that captures many of the com-
plexities associated with these real-world scenarios. We assume that the mobile
robots are deployed in a large two-dimensional plane, and that they can coor-
dinate via local communication using wireless radios. The robots must arrange
themselves to form a particular pattern, specifically, they must spread them-
selves evenly along a continuous curve drawn in the plane. In the firefighting
example described above, this curve might form the perimeter of the fire.

These types of coordination problems can be quite challenging due to the
dynamic and unpredictable environment that is inherent to wireless ad hoc net-
works. Robots may be continuously joining and leaving the system, and they
� Supported by NSF CSR program (Embedded & Hybrid systems area) under grant

NSF CNS-0614993.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 188–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Self-stabilizing Mobile Robot Formations with Virtual Nodes 189

may fail. In addition, wireless communication is notoriously unreliable due to
collisions, contention, and various wireless interference.

Virtual infrastructure has been proposed as a new tool for building reliable and
robust applications in unreliable wireless ad hoc networks (e.g., [1,2,3,4]). The
basic principle motivating virtual infrastructure is that many of the challenges in
a dynamic networks could be avoided if there were real network infrastructure
available. Unfortunately, in many contexts, such infrastructure is unavailable.
Thus, the virtual infrastructure abstraction emulates real infrastructure in ad
hoc networks. It has already been observed that virtual infrastructure simplifies
several important problems, including distributed shared memory [2], tracking
mobile devices [5], and geographic routing [1].

In this paper, we rely on a virtual infrastructure known as the Virtual Sta-
tionary Automata Layer (VSA Layer) [6,7]. Each robot is modelled as a client
which interacts with virtual stationary automata (VSAs) via a (virtual) com-
munication service. VSAs are distributed throughout the world, each assigned
permanently to its own region. An advantage of VSAs is that they are less likely
to fail than an individual mobile robot. Notice that the VSAs do not actually
exist in the real world; they are emulated by the underlying mobile robots.

The VSA Layer is modeled in the Timed Input/Output Automata (TIOA) [8]
framework. In TIOA parlance, an emulation is an implementation relationship
between two sets of TIOAs: those that specify the VSA Layer and those that
implement it. The emulation transforms an algorithm designed for the VSA
Layer into an algorithm that runs directly on the mobile robots. An execution
resulting from this transformation looks as if the original program is running
on the VSA Layer; formally, the traces of the transformed system, restricted to
non-broadcast actions at the client nodes, are traces of the VSA Layer. In [6,7],
we show how to emulate the VSA Layer in a wireless network of mobile robots.

Here, we show how to use the VSA Layer to implement a reliable and ro-
bust protocol for coordinating mobile robots. The protocol relies on the VSAs
to peform the coordination. Each VSA decides based on its local information
which robots to keep in its own region and which to assign to neighboring re-
gions. For each robot that remains, the VSA determines where the robot should
go. In order that the robot coordination be robust, our coordination protocol
is self-stabilizing, meaning that each robot can begin in an arbitrary state, in
an arbitrary location in the network, and yet the distribution of the robots will
converge to the specified curve. When combined with a self-stabilizing imple-
mentation of the VSA Layer, as is presented in [6,7], we end up with an entirely
self-stabilizing solution for the problem of autonomous robot coordination.

Self-stabilization provides many advantages. Given the unreliable nature of
wireless networks, occasionally (due to aberrant interference) messages may be
lost, disrupting the protocol; a self-stabilizing algorithm can readily recover from
this. In addition, a self-stabilizing algorithm can cope with more dynamic co-
ordination problems when the desired formation of robots may change. In the
firefighting example above the formation of firefighting robots must adapt as the
fire evolves. A self-stabilizing algorithm can easily adapt to these changes.

190 S. Gilbert et al.

The remainder of this paper is organized as follows. First, in Section 2, we
discuss some of the related work. Next, in Section 3, we discuss the VSA Layer
model. In Section 4 we describe the motion coordination problem, and describe
our algorithm that solves it. In Section 5, we show that the algorithm is correct,
and in Section 6, we show that the algorithm is self-stabilizing.

2 Related Work

The problem of motion coordination has been studied in a variety of contexts,
including: flocking [9]; rendezvous [10,11,12]; aggregation [13]; deployment and
regional coverage [14]; and pattern formation [15]. Control theory literature
contains several algorithms for achieving spatial patterns [16,17,18,19]. These
assume that agents process information and communicate reliably and syn-
chronously.

Asynchronous vision-based model have also been investigated in [15,20,21,22]
and [23]. In this model, agents are asynchronous, oblivious, and anonymous.
Each agent repeatedly performs look, compute, and move actions to compute its
next target position based on the current position of other visible agents. The
class of patterns that can be formed depends on the common knowledge of the
agents, such as common compass and common coordinates [15,23].

We have previously presented a protocol for coordinating mobile devices using
virtual infrastructure in [24]. This earlier protocol relies on a more powerful class
of virtual infrastructure (see [6,7]), and hence, our new protocol is somewhat
simpler (and more elegant). Moreover, the new protocol is self-stabilizing, which
allows both for better fault-tolerance, and also the ability to tolerate dynamic
changes in the desired pattern of motion. Virtual infrastructure has also been
considered in [25] in the context of coordinating airplane flight.

3 Virtual Stationary Automata

The Virtual Stationary Automata (VSA) infrastructure has been presented ear-
lier in [6,7]. The architecture of this abstraction layer is shown in Figure 1. In
this section, we informally describe these components.

Network tiling. We fix R to be a closed, bounded and connected subset of R
2, and

U, P to be two totally ordered index sets. R models the physical space in which
the robots reside; we call it the deployment space. U and P serve as the index
sets for regions in R and for the participating robots, respectively. A network
tiling divides R into a set of regions {Ru}u∈U , such that: (i) for each u ∈ U , Ru

is a closed, connected subset of R, and (ii) for any u, v ∈ U , Ru and Rv may
overlap only at their boundaries. For any u, v ∈ U , the corresponding regions are
said to be neighbors if Ru ∩ Rv �= ∅. This neighborhood relation, nbrs, induces
a graph on the set of regions. We assume that the resulting graph is connected.
Throughout this paper, we assume that each region has at most four neighbors;
generalizing to an arbitrary number of neighbors is straightforward. We define

Self-stabilizing Mobile Robot Formations with Virtual Nodes 191

V Bcast

VNu

VNv

CNp

CN q

V WRW

V BDelayu

V BDelayv

V BDelayp

V BDelayq

GPSupdatep
GPSupdateq

vcastp vcast′p

vrcvp

vcastq vcast′q

vrcvq

failp, restartp

failq, restartq

failv, restartv, timev

failu, restartu, timeu

vcastvvcast′v

vrcvv

vcastuvcast′u

vrcvu

Fig. 1. Virtual Stationary Automata layer

the distance between regions u and v, denoted regDist(u, v), as the minimum
number of hops between u and v in the graph. The diameter of the graph, i.e., the
distance between the farthest regions, is denoted by D, and the largest Euclidean
distance between any two points in any region is denoted by r.

Real World (RW) Automaton. RW is an external source of occasional but reli-
able time and location information for participating robots. The RW automaton
is parameterized by: (a) vmax > 0, a maximum speed, and (b) εsample > 0, a max-
imum time gap between successive updates for each robot. The RW automaton
maintains three key variables: (a) a continuous variable now representing true
system time; now increases monotonically at the same rate as real-time start-
ing from 0. (b) An array vel[P → R ∪ {⊥}]; for p ∈ P , vel(p) represents the
current velocity of robot p. Initially vel(p) is set to ⊥, and it is updated by the
robots when their velocity changes. (c) an array loc[P → R]; for p ∈ P , loc(p)
represents the current location of robot p. Over any interval of time, robot p
may move arbitrarily in R provided its path is continuous and its maximum
speed is bounded by vmax. Automaton RW performs the GPSupdate(l, t)p ac-
tion, l ∈ R, t ∈ R≥0, p ∈ P , to inform robot p about its current location and
time. For each p, some GPSupdate(,)p action must occur every εsample time.

Virtual World (V W) Automaton. V W is an external source of occasional but re-
liable time information for VSAs. Similar to RW ’s GPSupdate action for clients,
V W performs time(t)u output actions notifying VSAs of the current time. One
such action occurs at time 0, and they are repeated at least every εsample time
thereafter. Also, V W nondeterministically issues failu and restartu outputs for
each u ∈ U , modelling the fact that VSAs may fail and restart.

192 S. Gilbert et al.

Mobile client nodes. For each p ∈ P , the mobile client node CN p is a TIOA
modeling the client-side program executed by the robot with identifier p. CN p

has a local clock variable, clock that progresses at the rate of real-time, and is
initially ⊥. CN p may have arbitrary local non-failed variables. Its external in-
terface at least includes the GPSupdate inputs, vcast(m)p outputs, and vrcv(m)p

inputs. CN p may have additional arbitrary non-fail and non-restart actions.

Virtual Stationary Automata (VSAs). A VSA is a deterministic clock-equipped
abstract virtual machine. For each u ∈ U , there is a corresponding VSA VN u

which is associated with the geographic region Ru. VN u has a local clock
variable clock which progresses at the rate of real-time. (It is initially ⊥ be-
fore the first time input.) VN u has the following external interface: (a) Input
time(t)u, t ∈ R

≥0, models an update at time t; it sets node VN u’s clock to t.
(b) Output vcast(m)u, m ∈ Msg, models VN u broadcasting message m. (c) In-
put vrcv(m)u, m ∈ Msg, models VN u receiving a message m. VN u may have
additional non-failed variables and non-fail and non-restart internal actions.

VBDelay Automata. Each client and VSA node is associated with a VBDelay
buffer that delays messages when they are broadcast for up to e time. This buffer
takes as input a vcast(m) from the node and relays the message to the VBcast
service after some delay of at most e. In the case of VSA nodes, there is no delay.

VBcast Automaton. Each client and virtual node has access to the virtual broad-
cast communication service VBcast. The service is parameterized by a constant
d > 0 which bounds message delays. VBcast takes each vcast′(m, f)i input (from
the delay buffers) and delivers the message m via vrcv(m) at each client or vir-
tual node that is in the same region as the initial sender, when the message was
first sent, along with those in neighboring regions. The VBcast service guaran-
tees that in each execution of VBcast there is a correspondence between vrcv(m)
actions and vcast′(m, f)i actions such that: (i) each vrcv occurs after and within
d time of the corresponding vcast′, (ii) at most one vrcv at a process is mapped
to each vcast′. (iii) a message originating from some region u must be received
by all robots that are in Ru or its neighbors throughout the transmission period.

A VSA layer algorithm is an assignment of a TIOA program to each client
and VSA. We denote the set of all V-algorithms is as V Algs. We now define a
VLayer, i.e., a VSA layer with failure-prone clients and VSAs.

Definition 1. Let alg be an element of V algs. V LNodes[alg], the fail-
transformed nodes of the VSA layer parameterized by alg, is the composition
of each alg(i), modified so as to fail by crashing, with a VBDelay buffer, for all
i ∈ P ∪U . V Layer[alg], the VSA layer parameterized by alg, is the composition
of V LNodes[alg] with RW‖V W‖V Bcast.

4 Motion Coordination Using Virtual Nodes

In this paper we fix Γ : A → R to be a simple, differentiable curve on R that is
parameterized by arc length. The domain set A of parameter values is an interval

Self-stabilizing Mobile Robot Formations with Virtual Nodes 193

in the real line. We also fix a particular network tiling given by the collection
of regions {Ru}u∈U such that each point in Γ is also in some region Ru. Let
Au

∆= {p ∈ A : region(Γ (p)) = u} be the domain of Γ in region u. We assume
that Au is convex for every region u; it may be empty for some u. The local
part of the curve Γ in region u is the restriction Γu : Au → Ru. We write |Au|
for the length of the curve Γu. We define the quantization of a real number x
with quantization constant σ > 0 as qσ(x) = �x

σ σ. We fix σ, and write qu as an
abbreviation for qσ(|Au|), qmin for the minimum nonzero qu, and qmax for the
maximum qu.

Our goal is to design an algorithm for mobile robots such that, once the
failures and recoveries cease, within finite time all the robots are located on Γ
and as time progresses they eventually become equally spaced on Γ . Formally,
if no fail and restart actions occur after time t0, then:

(1) there exists a constant T , such that for each u ∈ U , within time to + T
the set of robots located in Ru becomes fixed and its cardinality is roughly
proportional to qu; moreover, if qu �= 0 then the robots in Ru are located
on1 Γu, and

(2) as time goes to infinity, all robots in Ru are evenly spaced2 on Γu.

4.1 Solution Using Virtual Node Layer

The VSA Layer is used as a means to coordinate the movement of client nodes,
i.e., robots. A VSA controls the motion of the clients in its region by setting and
broadcasting target waypoints for the clients: VSA VN u, u ∈ U , periodically
receives information from clients in its region, exchanges information with its
neighbors, and sends out a message containing a calculated target point for each
client node “assigned” to region u. VN u performs two tasks when setting the
target points: (1) it re-assigns some of the clients that are assigned to itself to
neighboring VSAs, and (2) it sends a target position on Γ to each client that
is assigned to itself. The objective of (1) is to prevent neighboring VSAs from
getting depleted of robots and to achieve a distribution of robots over the regions
that is proportional to the length of Γ in each region. The objective of (2) is to
space the nodes evenly on Γ within each region. The client algorithm, in turn,
receives its current position information from RW and computes a velocity
vector for reaching its latest received target point from a VSA.

Each virtual node VN u uses only information about the portions of the target
curve Γ in region u and neighboring regions. We assume that all client nodes
know the complete curve Γ ; however, we could model the client nodes in u as
receiving external information about the nature of the curve in region u and
neighboring regions only.
1 For a given point x ∈ R, if there exists p ∈ A such that Γ (p) = x, then we say that

the point x is on the curve Γ ; abusing the notation, we write this as x ∈ Γ .
2 A sequence x1, . . . ,xn of points in R is said to be evenly spaced on a curve Γ if

there exists a sequence of parameter values p1 < p2 . . . < pn, such that for each i,
1 ≤ i ≤ n, Γ (pi) = xi, and for each i, 1 < i < n, pi − pi−1 = pi+1 − pi.

194 S. Gilbert et al.

1 Signature:
2 Input time(t)u, t ∈ R

≥0

3 Input vrcv(m)u, m ∈ ({cn-update} ×P ×R) ∪ ({vn-update} ×U ×N)
4 Output vcast(m)u, m ∈ ({vn-update} ×{u} ×N) ∪ ({target-update} ×(P → R))
5

6 State:
7 analog clock: R

≥0∪ {⊥}, initially ⊥.
8 M:P→R, initially ∅.
9 V : U → N, initially ∅.

10

11 Trajectories:
12 evolve if clock �= t then d(clock) = 1 else d(clock) = 0
13 stop when Any precondition is satisfied.
14

15 Transitions:
16 Input time(t)u

17 Effect: if clock �= t ∨ t mod δ /∈ (0, e + 2d + 2ε] then M, V ← ∅; clock ← t
18

19 Input: vrcv(〈cn-update, id, loc〉)u

20 Effect: if u = region(loc) and clock mod δ ∈ (0, d] then M(id) ← loc; V ← ∅
21

22 Output: vcast(〈vn-update, u, n〉)u

23 Precondition: (clock mod δ) = d+ε and n= |M|�= 0 and V �= {〈u, n〉}
24 Effect: V ← {〈u, n〉}
25

26 Input vrcv(〈vn-update, id, n〉)u

27 Effect: if id ∈ nbrs(u) then V(id) ← n
28

29 Output vcast(〈target-update, target〉)u

30 Precondition: (clock mod δ) = e + 2d + 2ε and M �= ∅
31 target = calctarget(assign(id(M), V), M)
32 Effect: M, V ← ∅

Fig. 2. TIOA VN (k, ρ1, ρ2)u with parameters: safety k; damping ρ1, ρ2

4.2 Client Node Algorithm (CN)

The algorithm for the client node CN (δ)p, p ∈ P follows a round structure, where
rounds begin at times that are multiples of δ. At the beginning of each round,
a CN stops moving and sends a cn-update message to its local VSA (that is, the
VSA in whose region the CN currently resides). The cn-update message tells the
local VSA the CN ’s id and its current location in R. The local VN then sends a
response to the client, i.e., a target-update message. Each such message describes
the new target location x∗

p for CN p, and possibly an assignment to a different
region. CN p computes its velocity vector vp, based on its current position xp and
its target position x∗

p, as vp = (xp − x∗
p)/||xp − x∗

p|| and communicates vmaxvp

to RW , moving it with maximum velocity towards the target.

4.3 Virtual Stationary Node Algorithm (VN)

The algorithm for virtual node VN (k, ρ1, ρ2)u, u ∈ U , appears in Figure 2, where
k ∈ Z

+ and ρ1, ρ2 ∈ (0, 1) are parameters of the TIOA. VN u collects cn-update
messages sent at the beginning of the round from CN ’s located in region Ru, and
aggregates the location and round information in a table, M . When d + ε time

Self-stabilizing Mobile Robot Formations with Virtual Nodes 195

1 function assign(assignedM: 2P , y: nbrs+(u) → N) =
2 assign: P → U , initially {〈i, u〉} for each i ∈ assignedM
3 n: N, initially y(u); ra: N, initially 0
4 if y(u) > k then
5 if qu �= 0 then
6 let lower = {g ∈ nbrs(u): qg

qu
y(u) > y(g)}

7 for each g ∈ lower
8 ra ← min(�ρ2 · [qg

qu
y(u) − y(g)]/2(|lower|+1)�, n − k)

9 update assign by reassigning ra nodes from u to g
10 n ← n − ra
11 else if {v ∈ nbrs(u): qv �= 0} = ∅ then
12 let lower = {g ∈ nbrs(u) : y(u) > y(g)}
13 for each g ∈ lower
14 ra ← min(�ρ2 · [y(u) − y(g)]/2(|lower|+1)�, n − k)
15 update assign by reassigning ra nodes from u to g
16 n ← n − ra
17 else ra ← � (y(u) -k)/ |{v ∈ nbrs(u): qv �= 0}| �
18 for each g ∈ {v ∈ nbrs(u): qv �= 0}
19 update assign by reassigning ra nodes from u to g
20 return assign
21

22 function calctarget(assign: P → U , locM: P → R) =
23 seq: indexed list of pairs in A × P , sorted by the index A and then , P , initially the list:
24 〈p, i〉, ∀i ∈ P : (assign(i)= u) and (locM(i) ∈ Γu) and p= Γ −1

u (locM(i))
25 for each i ∈ P : assign(i) �= null
26 if assign(i) = g �= u then locM(i) ← og

27 else if locM(i) /∈ Γu then locM(i) ← choose {minx∈Γu{dist(x, locM(i))}}
28 else let p = Γ −1

u (locM(i)), seq(k) = 〈p, i〉
29 if k = first(seq) then locM(i) ← Γu(inf(Au))
30 else if k = last(seq) then locM(i) ← Γu(sup(Au))
31 else let seq(k − 1) = 〈pk−1, ik−1〉
32 seq(k + 1) = 〈pk+1, ik+1〉
33 locM(i) ← Γu(p + ρ1 · (pk−1+pk+1

2 − p))
34 return locM

Fig. 3. Functions assign and calctarget for the case where VN (k, ρ1, ρ2)u has
at most 4 neighbors

passes from the beginning of the round, VN u computes from M the number of
client nodes assigned to it that it has heard from in the round, and sends this
information in a vn-update message to all of its neighbors.

When VN u receives a vn-update message from a neighboring VN , it stores the
CN population information in a table, V . When e + d + ε time from the sending
of its own vn-update passes, VN u uses the information in its tables M and V
about the number of CN s in its and its neighbors’ regions to calculate how many
CN s assigned to itself should be reassigned and to which neighbor. This is done
through the assign function, and these assignments are then used to calculate
new target points for local CN s through the calctarget function (see Figure 3).

If the number of CN s assigned to VN u exceeds the minimum safe num-
ber k, then assign reassigns some CN s to neighbors. Let Inu denote the set
of neighboring VN s of VN u that are on the curve Γ and yu(g), denote the
number num(Vu(g)) of CN s assigned to VN g, where g is either u or a neigh-
bor of u. If qu �= 0, meaning VN u is on the curve then we let loweru de-
note the subset of nbrs(u) that are on the curve and have fewer assigned CN s

196 S. Gilbert et al.

than VN u has after normalizing with qg

qu
. For each g ∈ loweru, VN u reas-

signs the smaller of the following two quantities of CN s to VN g: (1) ra =
ρ2 · [qg

qu
yu(u)− yu(g)]/2(|loweru|+ 1), where ρ2 < 1 is a damping factor , and (2)

the remaining number of CN s over k still assigned to VN u.
If qu = 0, meaning VN u is not on the curve, and VN u has no neighbors on the

curve (lines 11–15), then we let loweru denote the subset of nbrs(u) with fewer
assigned CN s than VN u. For each g ∈ loweru, VN u reassigns the smaller of the
following two quantities of CN s: (1) ra = ρ2 · [yu(u)−yu(g)]/2(|loweru|+1) and
(2) the remaining number of CN s over k still assigned to VN u. VN u is on a
boundary if qu = 0, but there is a g ∈ nbrs(u) with qg �= 0. In this case, yu(u)−k
of VN u’s CN s are assigned equally to neighbors in Inu (lines 17–19).

The calctarget function assigns to every CN p in the region of VN u a target
point locMu(p), either in region u or one of u’s neighbors. The target point
locMu(p) is computed as follows: If CN p is assigned to VN g, g �= u, then its
target is set to the center og of region g (lines 26–26); if CN p is assigned to VN u

but is not located on the curve Γu then its target is set to the nearest point on
the curve, nondeterministically choosing one (lines 27–27); if CN p is either the
first or last client node on Γu then its target is set to the corresponding endpoint
of Γu (lines 29–30); if CN p is on the curve but is not the first or last client node
then its target is moved to the mid-point of the locations of the preceding and
succeeding CN s on the curve (line 33). For the last two computations a sequence
seq of nodes on the curve sorted by curve location is used (line 24). Lastly, VN u

broadcasts new waypoints via a target-update message to its clients.

Round length. Let r be the maximum Euclidean distance between points in
neighboring regions. It can take r

vmax
time for a client to reach its target. After

the client arrives, the VN may have failed. Let dr be the time it takes a VN
to restart. During each round: a client sends a cn-update, the VN s exchange
information, clients receive target-updates, clients move to their new target and
restart any VNs. This requires that δ satisfy δ > 2e + 3d + 2ε + r/vmax + dr.

5 Correctness of Algorithm

In this section we describe the steps in proving Theorem 1; the complete proofs
will appear in the full version of the paper. We define round t as the interval of
time [δ(t − 1), δ · t). That is, round t begins at time δ(t − 1) and is completed
by time δ · t. We say CN p, p ∈ P , is active in round t if node p is not failed
throughout round t. A VN u, u ∈ U , is active in round t if there is some active
CN p such that region(xp) = u for the duration of rounds t − 1 and t. Thus, by
definition, none of the VN s is active in the first round.

Let In(t) ⊆ VN denote the identifiers u ∈ U such that VN u is active in round
t and qu �= 0. The set Out(t) ⊆ VN denote the identifiers u ∈ U such that VN u

is active in round t and qu = 0. The set C(t) is the subset of active CN s at round
t, and Cin(t) and Cout(t) are the sets of active CN s located in regions with ids
in In(t) and Out(t), respectively, at the beginning of round t.

Self-stabilizing Mobile Robot Formations with Virtual Nodes 197

For every pair of regions u, w and for every round t, we define y(w, t)u to
be the value of V (w)u (i.e., the number of clients u believes are available in
region w) immediately prior to VN u performing a vcastu in round t. If there
are no new client failures or recoveries in round t, then for every pair of regions
u, w ∈ nbrs+(v), we can conclude that y(v, t)u = y(v, t)w, which we denote
simply as y(v, t). We define ρ3

∆= q2
max

(1−ρ2)σ .
For the rest of this section we fix a particular round number t0 and assume

that ∀p ∈ P , no failp or recoverp events occur at or after round t0. First we
establish that in every round t ≥ t0: (1) If y(u, t) ≥ k for some u ∈ U , then
y(u, t + 1) ≥ k; (2) In(t) ⊆ In(t + 1); (3) Out(t) ⊆ Out(t + 1). Next, we
identify a round t1 ≥ t0 after which the set of regions In(t) and Out(t) remain
fixed. That is, we show that there exists a round t1 ≥ t0 such that for every
round t ∈ [t1, t1 + (1 + ρ3)m2n2]: (1) In(t) = In(t1); (2) Out(t) = Out(t1);
(3) Cin(t) ⊆ Cin(t + 1); and (4) Cout(t + 1) ⊆ Cout(t). We fix t1 such that it
satisfies the above conditions. The next lemma states that eventually, regions
bordering on the curve stop assigning clients to regions that are on the curve.

Lemma 1. There exists some round t2 ∈ [t1, t1 + (1 + ρ3)m2n2] such that for
every round t ∈ [t2, t2 + (1 + ρ3)m2n]: if u ∈ Out(t) and v ∈ In(t) and if u and
v are neighboring regions, then u does not assign any clients to v in round t.

Fix t2 for the rest of this section such that it satisfies Lemma 1. From the above
discussion, it follows that in every round t ≥ t1, In(t) = In(t1) and Out(t)
= Out(t1); we denote these simply as In and Out. The next lemma states a key
property of the assign function after round t1. For a round t ≥ t1, consider some
VN u, u ∈ Out(t), and assume that VN w is the neighbor of VN u assigned the
most clients in round t. Then we can conclude that VN u is assigned no more
clients in round t + 1 than VN w is assigned in round t. A similar claim holds
for regions in In(t), but in this case with respect to the density of clients with
respect to the quantized length of the curve. The next lemma states that there
exists a round Tout such that in every round t ≥ Tout, the set of CN s assigned
to region u ∈ Out(t) does not change.

Lemma 2. There exists a round Tout ∈ [t2, t2 + m2n such that in any round
t ≥ Tout, the set of CN s assigned to VN u, u ∈ Out(t), is unchanged.

For the rest of the section we fix Tout to be the first round after t0, at which the
property stated by Lemma 2 holds. This implies that in every round t ≥ Tout,
CIn(t) = CIn (t1) and COut (t) = COut (t1); we denote these simply as CIn and
COut . The next lemma states a property similar to that of Lemma 2 for VN u,
u ∈ In, and the argument is similar to the proof of Lemma 2.

Lemma 3. There exists a round Tstab ∈ [Tout, Tout + ρ3m
2n] such that in every

round t ≥ Tstab, the set of CN s assigned to VN u, u ∈ In, is unchanged.

We prove that the number of clients located in regions with ids in Out is upper-
bounded by O(m3). Next, fixing Tstab to be the first round after Tout at which
the property stated by Lemma 3 holds, we are able to prove that the number

198 S. Gilbert et al.

of clients assigned to each VN u, u ∈ In, in the stable assignment after Tstab is
proportional to qu within a constant additive term. From line 27 of Figure 3, it
follows that by the beginning of round Tstab + 2, all CN s in Cin are located on
the curve Γ , satisfying our first goal. The next lemma states that the locations of
the CN s in each region u ∈ In, are evenly spaced on Γu in the limit; it is proved
by analyzing the behavior of calctarget as a discrete time dynamical system.

Lemma 4. Consider a sequence of rounds t1 = Tstab, . . . , tn. As n → ∞, the
locations of CN s in u, u ∈ In, are evenly spaced on Γu.

Thus we conclude by summarizing the results in this section:

Theorem 1. If there are no fail or restart actions for robots at or after some
round t0, then within a finite number of rounds after t0:

1. The set of CN s assigned to each VN u, u ∈ U , becomes fixed, and the size
of the set is proportional to the quantized length qu, within an a constant
additive term 10(2m−1)

qminρ2
.

2. All client nodes in a region u ∈ U for which qu �= 0 are located on Γu and
evenly spaced on Γu in the limit.

6 Self-stabilization

In this section we show that the VSA-based motion coordination scheme is self-
stabilizing. Specifically, we show that when the VSA and client components in
the VSA layer start out in some arbitrary state (owing to failures and restarts),
they eventually return to a reachable state. Thus, the visible behavior, or traces ,
of V Layer[MC] running with some reachable state of V bcast‖RW‖V W , even-
tually, becomes indistinguishable from a reachable trace of V Layer[MC].

We first show that our motion coordination algorithm V Nodes[MC] is self-
stabilizing to some set of legal states LMC . Then, we show that these legal
states correspond to reachable states of V Layer[MC]; hence, the traces of our
motion coordination algorithm, where clients and VSAs start in an arbitrary
state, eventually look like reachable traces of the correct motion coordination
algorithm. Here MC is the motion coordination algorithm of Section 4.

6.1 Definitions and General Results

We begin with some basic claims. Through out this section A, A1, A2, etc., are
sets of actions and V is a set of variables. An (A, V)-sequence is a (possibly
infinite) alternating sequence of actions in A and trajectories of V . Given (A, V)-
sequences α, α′ and t ≥ 0, α′ is a t-suffix of α if there exists a closed (A, V)-
sequence α′′ of duration t such that α = α′′α′. α′ is a state-matched t-suffix of
α if it is a t-suffix of α, and the first state of α′ equals the last state of α′′.

Given a set of (A1, V)-sequences S1, a set of (A2, V)-sequences S2, and t ≥ 0,
S1 is said to stabilizes in time t to S2 if each state-matched t-suffix α of each
sequence in S1 is in S2. This stabilizes to relation is transitive as per the following:

Self-stabilizing Mobile Robot Formations with Virtual Nodes 199

Lemma 5. Let Si be a set of (Ai, V)-sequences, for i ∈ {1, 2, 3}. If S1 stabilizes
to S2 in time t1, and S2 stabilizes to S3 in time t2, then S1 stabilizes to S3 in
time t1 + t2.

Let A be any TIOA with set of states QA, and L be a nonempty subset of QA.
L is said to be a legal set for A if it is closed under the transitions and closed
trajectories of A. For any L ⊆ QA, Start(A, L) is defined to be the TIOA that
is identical to A except with starting states L. We define U(A) ∆= Start(A, QA)
and R(A) ∆= Start(A, ReachA), where ReachA is the set of reachable states of A.

Definition 2. Let B and A be compatible TIOAs, and L be a legal set for the
composed TIOA A‖B. A self-stabilizes in time t to L relative to B if the set of
executions of U(A)‖B stabilizes in time t to executions of Start(A‖B, L).

As per the theory of stabilizing emulations, assume we have a stabilizing VSA
layer emulation such that each algorithm alg ∈ V Algs stabilizes in some tV stab

time to traces of U(V LNodes[alg])‖R(RW‖V W‖V bcast) that satisfy the addi-
tional property that for any u ∈ U , if there exists a client that has been in region
u and alive for dr time and no alive clients in the region failed or left in that time,
then VSA Vu is not failed. In the context of this work, this means that if VSA
layer algorithm MC is such that V LNodes[MC] self-stabilizes in some time t to
LMC relative to R(RW‖V W‖V bcast), then we can conclude that physical node
traces of the emulation algorithm on MC stabilize in time tV stab + t to client
traces of executions of the VSA layer started in legal set LMC and that satisfy
the above failure-related properties.

6.2 Self-stabilization of Our Algorithm

We now describe two legal sets for V Layer[MC], the second a subset of the first.
The first is a set of states that results after the first GPSupdate at each client
and the first time at each virtual node. It is easy to verify that this is a legal set.

Definition 3. We define L1
MC to be the set of states x ∈ XV Layer[MC] such that

the following hold:

1. x�XV bcast‖RW‖V W ∈ ReachV bcast‖RW‖V W .
2. ∀u ∈ U : ¬failedu : clocku ∈ {RW.now,⊥} ∧ (Mu �= ∅ ⇒ clocku mod δ ∈

(0, e + 2d + 2ε]).
3. ∀p ∈ P : ¬failedp ⇒ vp ∈ {RW.vel(p)/vmax,⊥}.
4. ∀p ∈ P : ¬failedp ∧ xp �= ⊥:

(a) xp = RW.loc(p) ∧ clockp = RW.now.
(b) x∗

p ∈ {xp,⊥} ∨ ||x∗
p − xp|| < vmax(δ�clockp/δ − clockp − dr).

(c) V bcast.reg(p) = region(xp)∨clock mod δ ∈ (e+2d+2ε, δ−dr+εsample).

Part 1 means that x restricted to the state of V bcast‖RW‖V W is a reachable
state of V bcast‖RW‖V W . Part 2 means that the nonfailed VSAs have clocks
that are either equal to real-time or ⊥, and have nonempty M only after the

200 S. Gilbert et al.

beginning of a round and up to e + 2d + 2ε time into a round. Part 3 requires
that nonfailed clients have velocity vectors that are equal either to ⊥ or equal
to the client’s velocity vector in RW , scaled down by vmax. Part 4 has three
sub-parts and they assert that nonfailed clients with non-⊥ positions have (a)
positions equal to their actual location and local clocks equal to the real-time,
(b) targets equal to ⊥ or the current location or a point reachable from the
current location before a certain time (dr), and (c) V bcast last region updates
that match the current region or the time is within a certain time window in a
round. The following stabilization result is also easy to verify.

Lemma 6. V LNodes[MC] is self-stabilizing to L1
MC in time t > εsample rela-

tive to the automaton R(V bcast‖RW‖V W).

The main legal set LMC for our algorithm is described as the set of reachable
states from a set of reset states.

Definition 4. Define ResetMC to be the set of states x ∈ XV Layer[MC] such
that the following properties hold:

1. x ∈ L1
MC .

2. ∀p ∈ P : ¬failedp ⇒ [tosnd−
p = tosnd+

p = λ∧(xp = ⊥∨ [x∗
p �= ⊥∧vp = 0])].

3. ∀u ∈ U : ¬failedu ⇒ to sendu = λ.
4. ∀〈m, u, t, P ′〉 ∈ vbcastq : P ′ = ∅.
5. RW.now mod δ = 0 ∧ ∀p ∈ P : ∀〈l, t〉 ∈ RW.updates(p) : t < RW.now.

LMC is the set of reachable states of Start(V Layer[MC], ResetMC).

Part 2 states that each nonfailed client has empty queues in its V BDelay and
either has a position variable equal to ⊥ or else has both a non-⊥ target and
0 velocity. Part 3 requires that each nonfailed VSA has an empty queue in its
V BDelay. By Part 4 there are no pending messages in V bcast, and Part 5
means that the time is the starting time for a round and that no GPSupdates
have yet occurred at this time. It is easy to see that that LMC is a legal set for
VLayer[MC]. We show that starting from a state in L1

MC , we reach a reset state
which implies that eventually we arrive at a state in LMC .

Lemma 7. Executions of V Layer[MC] started in states in L1
MC stabilize in

time δ + d + e to executions started in states in LMC .

Now we can combine our stabilization results to conclude that V LNodes[MC]
started in an arbitrary state and run with R(V bcast‖RW‖V W) stabilizes to
LMC in time δ + d + e + εsample. From transitivity of stabilization and 7, the
next result follows.

Theorem 2. V LNodes[MC] is self-stabilizing to LMC in time δ+d+e+εsample

relative to R(V bcast‖RW‖V W).

Self-stabilizing Mobile Robot Formations with Virtual Nodes 201

6.3 Relationship between LMC and Reachable States

We just showed that V LNodes[MC] is self-stabilizing to LMC relative to the
automaton R(V bcast‖RW‖V W). However, in order to conclude anything about
the traces of V Layer[MC] after stabilization, we need to show that traces of
V Layer[MC] starting in a state in LMC are reachable traces of V Layer[MC].
We do this by first defining a simulation relation between states of V Layer[MC]
and then showing that for each state x in LMC there is a reachable state y of
V Layer[MC] such that x is related to y under the simulation relation. This
implies that the trace of any execution fragment starting with x is the trace of an
execution fragment starting with y, which is a reachable trace of V Layer[MC].

In order to show that each state in LMC is related to some reachable state of
V Layer[MC], it is enough to show that each state in ResetMC is related to a
reachable state of V Layer[MC]. The proof proceeds by providing a construction
of an execution of V Layer[MC] for each state in LMC .

Lemma 8. For each state x ∈ ResetMC, there exists a reachable state y of
V Layer[MC] such that xRMCy.

From these results it follows that the set of trace fragments of V Layer[MC]
starting from ResetMC is contained in the set of traces of R(V Layer[MC]).
Bringing our results together we arrive at the main theorem:

Theorem 3. The traces of V LNodes[MC], starting in an arbitrary state and
executed with automaton R(V bcast‖RW‖V W), stabilize in time δ+d+e+εsample

to reachable traces of R(V Layer[MC]).

Thus, despite starting from an arbitrary configuration of the VSA and client
components in the VSA layer, if there are no failures or restart of client nodes
at or after some round t0, then within a finite number of rounds after t0, the
clients are located on the curve and equally spaced in the limiting sense.

References

1. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N.A., Nolte, T.A.: Virtual stationary
automata for mobile networks. Technical Report MIT-LCS-TR-979 (2005)

2. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J.: Geoquorums: Imple-
menting atomic memory in ad hoc networks. In: Fich, F.E. (ed.) DISC 2003. LNCS,
vol. 2848, pp. 306–320. Springer, Heidelberg (2003)

3. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.: Geoquorums:
Implementing atomic memory in mobile ad hoc networks. Distributed Computing
(2005)

4. Chockler, G., Gilbert, S., Lynch, N.: Virtual infrastructure for collision-prone wire-
less networks. In: Proceedings of PODC (to appear, 2008)

5. Nolte, T., Lynch, N.A.: A virtual node-based tracking algorithm for mobile net-
works. In: ICDCS (2007)

6. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T.: Virtual stationary au-
tomata for mobile networks. In: OPODIS (2005)

202 S. Gilbert et al.

7. Nolte, T., Lynch, N.A.: Self-stabilization and virtual node layer emulations. In:
Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 394–408. Springer,
Heidelberg (2007)

8. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science. Morgan Claypool, San Fran-
cisco (2005)

9. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. on Automatic Control 48(6),
988–1001 (2003)

10. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5), 818–828 (1999)

11. Lin, J., Morse, A., Anderson, B.: Multi-agent rendezvous problem. In: IEEE CDC
2003 (2003)

12. Martinez, S., Cortes, J., Bullo, F.: On robust rendezvous for mobile autonomous
agents. In: IFAC World Congress (2005)

13. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. on Automatic
Control 48(4), 692–697 (2003)

14. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing
networks. IEEE Trans. on Robotics & Automation 20(2), 243–255 (2004)

15. Suzuki, I., Yamashita, M.: Distributed autonomous mobile robots: Formation of
geometric patterns. SIAM Journal of computing 28(4), 1347–1363 (1999)

16. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations.
IEEE Trans. on Automatic Control 49, 1465–1476 (2004)

17. Clavaski, S., Chaves, M., Day, R., Nag, P., Williams, A., Zhang, W.: Vehicle net-
works: achieving regular formation. In: ACC (2003)

18. Blondel, V., Hendrickx, J., Olshevsky, A., Tsitsiklis, J.: Convergence in multiagent
coordination consensus and flocking. In: IEEE CDC-ECC 2005, pp. 2996–3000
(2005)

19. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

20. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile
robots. In: ERSADS, pp. 185–190 (May 2001)

21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by au-
tonomous robots without chirality. In: SIROCCO, 147–162 (June 2001)

22. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

23. Prencipe, G.: Achievable patterns by an even number of autonomous mobile robots.
Technical Report TR-00-11 (2000)

24. Lynch, N., Mitra, S., Nolte, T.: Motion coordination using virtual nodes. In: IEEE
CDC 2005 (December 2005)

25. Brown, M.D.: Air traffic control using virtual stationary automata. Master’s thesis,
MIT (September 2007)

An Application of

Specification-Based Design of Self-stabilization
to Tracking in Wireless Sensor Networks

Murat Demirbas1 and Anish Arora2

1 Computer Science & Engineering Dept.
University at Buffalo, SUNY, Buffalo, NY, 14260

demirbas@cse.buffalo.edu
2 Computer Science & Engineering Dept.

The Ohio State University, Columbus, OH, 43210
anish@cse.ohio-state.edu

Abstract. In previous work, we have designed a tracking protocol, Stalk,
for wireless sensor networks and proved it to be self-stabilizing at the
pseudo-code (I/O automata) level. However, it is very challenging to
achieve and verify self-stabilization of the same protocol at the imple-
mentation (TinyOS) level due to the size of the corresponding program
at the implementation level. In this paper, we present a lightweight and
practical method for specification-based design of stabilization and illus-
trate this method on the Stalk protocol as our case study.

1 Introduction

In previous work [1] we presented a self-stabilizing tracking service, Stalk, for sen-
sor networks. There, we used I/O automata specification language for describing
Stalk, and gave formal proofs of correctness and self-stabilization for this I/O
language program. The implementation languages for sensor network platforms
are, however, more finer-grained than the abstract I/O language. For the mote [2]
platform, the implementation language is a dialect of C, called NesC [3], and the
runtime environment TinyOS [4] consists of a collection of system components
for network protocols and sensor drivers. With a conservative estimate, the 20
lines of I/O code we wrote for Stalk will correspond to 2000 lines of code (includ-
ing the libraries for networking and sensing) at the implementation level. Even
though we formally verified Stalk at the I/O language level, proving correctness
and self-stabilization of the corresponding implementation at the TinyOS level
by studying 2000 lines of code is a very challenging task.

There have been several work on fault-tolerance preserving refinements [5,6,7,
8]. One can consider using these refinements for implementing Stalk in TinyOS,
however, these refinements do not have compiler/code-transformer tool support
and, hence, their adoption in practice is limited. In this case, it would be hard
to prove manually that our implementation at the TinyOS level is in fact a
stabilization-preserving refinement of Stalk at the I/O automata level.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 203–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 M. Demirbas and A. Arora

Contributions of this paper: In this paper we present a lightweight and prac-
tical method for specification-based design of stabilization. More specifically, we
show that we can use ordinary refinements (for which a lot of compiler/tool sup-
port exists) and still achieve a specification-based design of stabilization under
suitable conditions. We illustrate our lightweight and practical specification-
based design method on the Stalk protocol as our case study.

An outline of our lightweight method for specification-based design
of stabilization. Given a high-level system specification A, the specification-
based approach [5, 6] is to design a tolerance wrapper W such that adding W
to A yields a fault-tolerant system. The goal is to ensure that for any low-level
implementation C of A adding a low-level implementation W ′ of W would also
yield a fault-tolerant system. Since the refinements from A to C and W to
W ′ can be done independently, specification-based design enables a posteriori or
dynamic addition of fault-tolerance. That is, given a concrete implementation C,
it is possible to add fault-tolerance to C by first designing an abstract tolerance
wrapper W using solely an abstract specification A of C, and then adding a
concrete refinement W ′ of W to C.

We next present a brief outline of our method for adopting ordinary refine-
ments for specification-based design of stabilization in terms of a series of chal-
lenges and fixes.

Challenge: Refinements do not preserve fault-tolerance. Ordinary refine-
ments do not preserve fault-tolerance and do not support fault-tolerance compo-
sition: Even though the abstract system composed of the fault-intolerant tracking
program A and the self-stabilization wrapper W is self-stabilizing, when A and W
are refined into C and W ′ at the implementation level, the concrete system might
not be stabilizing since starting from faulty states C may interfere with and inval-
idate the recovery strategy of W ′. Even when one proves that starting from faulty
states A does not interfere with W , since ordinary refinements are concerned only
with computations starting from good states, computations of C that start from
faulty states are unconstrained and may be interfering with W ′.

Fix: Use atomic wrappers to avoid interference. In order to prevent the
interferences between the wrapper and the application code outside the good
states, we use atomic wrappers at both the abstract and the concrete systems.
When an atomic wrapper is executed it corrects the application to a good state
in a single step, and the application code does not have the opportunity to
interfere with the execution and the recovery strategy of the wrapper. Similarly,
we also require that the wrapper self-stabilizes atomically in order to prevent the
application to interfere with the self-stabilization of the wrapper when starting
from a faulty state for the wrapper.

Challenge: Atomic wrappers are infeasible for distributed systems.
In a distributed system, global system state is not available for instantaneous
access. So, it is unrealistic to assume a wrapper that can in one step correct the
entire application state, which is distributed across the system/network.

An Application of Specification-Based Design of Self-stabilization 205

Fix: Use local atomic wrappers per each process. For effective
specification-based design of stabilization of distributed systems, we restrict our
attention to wrappers local to each process of the distributed system. At the
abstract level, A = (i :: Ai) 1, we design the wrappers to be decomposable as
local wrappers, one for every process i; i.e., W = (i :: Wi). While refining to
a distributed implementation C = (i :: Ci) we refine these local and atomic
wrappers to be composed with the application code Ci at each process i; i.e.,
W ′ = (i :: W ′

i)

Challenge: Composed system as a whole may still fail to be stabilizing.
By using local and atomic wrappers we achieve stabilization for each process
both at the abstract and concrete system levels. However, even though all the
processes are individually stabilizing, the system may fail to stabilize as a whole
due to the continuous introduction of corruptions to the system by the processes
that are in a faulty state at the time. Consider a scenario where process j is not
yet stabilized but i is. If they interact, i may receive bad input from j, and its
state may become bad. Next, when j is corrected to a good state, since i is not
yet stabilized, i can in turn infect j. This cycle may repeat infinitely, and even
though i and j are individually stabilizing, the system may fail to stabilize as a
whole.

Fix: Use a compositional framework. In order to ensure that stabilization
of individual processes leads to stabilization of the system as a whole, we borrow
ideas from literature on compositional approaches to stabilization. One simple
idea is stabilization through composition of layers [10]. In the traditional stabi-
lization by layers approach lower-level processes are oblivious to the existence
of higher-level processes, and higher-level processes can read (but not write) the
state of a lower-level process. Processes can corrupt each other, but only in a
predetermined controlled way since lower-level processes cannot be affected by
the state of higher-level ones. Also, the order in which correction must take
place is the same direction; the correction of higher-levels depend on that of
lower-levels. In order to ensure that stabilization compose at the system level,
we adopt a layered composition technique at the abstract system level and as-
sert that the concrete system preserve the layered composition structure of the
abstract system.

Application to Stalk. To recap, we make the following assumptions in our
method:

1 A formula (op i : R.i : X.i) denotes the value obtained by performing the (commuta-
tive and associative) op on the X.i values for all i that satisfy R.i. As special cases,
where op is conjunction, we write (∀i : R.i : X.i), and where op is disjunction, we
write (∃i : R.i : X.i). Thus, (∀i : R.i : X.i) may be read as “if R.i is true then so is
X.i”, and (∃i : R.i : X.i) may be read as “there exists an i such that both R.i and
X.i are true”. Where R.i is true, we omit R.i. This notation is adopted from [9]. In
the above formula, the operator denotes the union of automata/processes.

206 M. Demirbas and A. Arora

1. Wrappers are local to each process and are atomic.
2. Identical layered composition structure is used by the abstract and concrete

systems.

These two assumptions are satisfied by a rich class of implementations. In
our case, Stalk satisfies both assumptions. The correctors (wrappers) in Stalk
are local to each process and atomic: the process is atomically put into a locally
consistent state with respect to the processes it interacts. Also Stalk algorithm
imposes a static structure on the information flow. There is no communication
from a higher level process to a lower level process in Stalk. The direction of
communication in the protocol is always from lower level processes to higher
level processes. Due to this structural constraint, the same layered composition
structure is applicable at both the abstract and concrete systems.

We show, using these two assumptions, that an ordinary refinement suffices
for the fault-intolerant tracking algorithm, and a self-stabilization preserving re-
finement suffices for the wrappers. The reason we use a stabilization-preserving
refinement for the wrapper is to ensure that the concrete wrapper is able to sta-
bilize from the corruption of its variables. Since there are a lot of tool support
for ordinary refinements, refinement of the tracking algorithm can be done au-
tomatically via a compiler. Since the wrappers are small and simple their proof
of self-stabilization can be achieved easily even at the implementation level.

Outline of the rest of the paper. We present the system model in Section 2.
We then prove in Section 3 that the refinement method we described above is
amenable for the specification-based design approach. We discuss the refinement
of Stalk to a self-stabilizing implementation in Section 4. After presenting the
related work in Section 5, we conclude the paper in Section 6.

2 Model

Let Σ be a state space.

Definition. A system S is a finite-state automaton (Σ, T , I) where T , the set
of transitions, is a subset of {(s0, s1) : s0, s1 ∈ Σ} and I, the set of initial states,
is a subset of Σ.

A computation of S is a maximal sequence of states such that every state is
related to the subsequent one with a transition in T , i.e., if a computation is
finite there are no transitions in T that start at the final state.

We refer to an abstract system as a specification, and to a concrete system
as an implementation. For convenience in this paper we assume that the speci-
fication and the implementation use the same state space. In general, the state
space of the implementation can be different than that of the specification since
the implementations often introduce some components of states that are not
used by the specifications. We handle this by relating the states of the concrete
implementation with the abstract specification via an abstraction function. The
abstraction function is a total mapping from ΣC , the state space of the imple-
mentation C, onto ΣA, the state space of the specification A. That is, every

An Application of Specification-Based Design of Self-stabilization 207

state in C is mapped to a state in A, and correspondingly, every state in A is
an image of some state in C. All definitions and theorems in this chapter are
readily extended with respect to the definition of the abstraction function. The
soundness and completeness of these abstraction functions are discussed in detail
in [11].

Henceforth, let C be an implementation and A a specification.

Definition. C is a refinement of A, denoted [C ⊆ A]init, iff every computation
of C that starts from an initial state is a computation of A.

Definition. C is an everywhere refinement [5] of A, denoted [C ⊆ A], iff every
computation of C is a computation of A.

A fault is a perturbation of the system state. Here, we focus on transient faults
that may arbitrarily corrupt the process states. The following definition captures
a standard tolerance to transient faults.

Definition. C is stabilizing to A iff every computation of C has a suffix that is
a suffix of some computation of A that starts at an initial state of A.

This definition of stabilization allows the possibility that A is stabilizing to A,
that is, A is self-stabilizing.

We define a wrapper to be a system over Σ and formulate the “addition” of
one system to another in terms of the operator (pronounced “box”) which
denotes the union of automata.

Let A and C be distributed systems composed of processes Ai and Ci respec-
tively; i.e., A = (i :: Ai) and C = (i :: Ci). We say that a wrapper Wi for
each process Ai is local and atomic iff Wi when executed self-stabilizes (if its
state is corrupted) and corrects Ai to a good state (locally consistent state) in
a single step.

3 Adopting Ordinary Refinements for Specification-Based
Design

In this section we prove that we can adopt ordinary refinements for the
specification-based design of stabilization under suitable conditions. One of these
conditions is the use of a layered composition structure of the processes in the
system. Stabilization through composition of layers asserts that the correction
and the corruption relations are to the same direction and form a directed acyclic
graph. Corruption relation denotes for each process in a bad state which other
processes it can corrupt. That is the corruption relation constrains the processes
an uncorrected process can potentially corrupt. Correction relation denotes for
each process the prior correction of which other processes its correction depends
on. That is, the correction relation constrains the order in which correction must
occur. In cases where the correction and corruption relations are in reverse direc-
tions, persistent corruption cycles may be formed: even though all the processes
are individually stabilizing, the system may fail to stabilize due to the continuous
introduction of corruptions to the system via these corruption cycles. However,

208 M. Demirbas and A. Arora

in the case of layered composition since both correction and corruption relations
are in the same direction, corruption cycles do not exist. Therefore, in this case,
if all processes are individually stabilizing, then the system as a whole is also
stabilizing [10].

Theorem 1 formally states the conditions under which ordinary refinements
are usable for the specification-based design of stabilization: Given local and
atomic wrappers (premise 3) that achieve stabilization of the abstract system
(premise 1), ordinary refinement of the application code at each process (premise
2) when composed with everywhere refinement of the abstract wrapper (premise
4) —provided that the layered composition structure of the abstract is preserved
(premise 5)— results into a concrete system that is self-stabilizing to the abstract
system specifications.

Theorem 1. If

1. (i :: [Ai Wi]) is stabilizing to Ai,
2. (∀i :: [Ci ⊆ Ai]init),
3. (∀i :: [W ′

i ⊆ Wi]),
4. (∀i :: Wi is local and atomic), and
5. the correction & corruption relations of the abstract system are to the same

direction, and the concrete system preserves the correction & corruption
relations of the abstract

then (i :: [Ci Wi]) is stabilizing to (i :: Ai).

Proof. From premises 3 and 4 it follows that (∀i :: W ′
i is local and atomic), and

hence Ci cannot interfere with the recovery strategy of W ′
i . Thus, from premises

2, 3, and 4, it follows that (∀i :: [Ci Wi] is stabilizing to [Ai Wi]). Even
though, at this point we have stabilization at the process level, the system as a
whole may fail to be stabilizing due to corruption cycles. Premise 5 takes care of
this concern as we discussed above. The conclusion follows from this result and
premise 1. ��
Theorem 1 shows that an ordinary refinement suffices for the fault-intolerant
application, and a self-stabilization preserving refinement suffices for the wrap-
pers. The reason we use a stabilization-preserving refinement (e.g., everywhere
refinements) for the wrapper is to ensure that the concrete wrapper is able to
stabilize from the corruption of its variables. Since there are a lot of tool support
for ordinary refinements, refinement of the tracking algorithm can be done au-
tomatically via a compiler. Since the wrappers are small and simple their proof
of self-stabilization can be achieved easily even at the implementation level.

4 Refinement of Stalk to the Implementation Level

In this section, we present a refinement of the abstract Stalk program to the
TinyOS implementation level by showing that Theorem 1 is applicable for this
refinement. We start by recalling some of the properties of Stalk and pointing
out which concepts of Theorem 1 they correspond to. We then continue with a
discussion of the refinement to the implementation level.

An Application of Specification-Based Design of Self-stabilization 209

Input: objecti

eff: if c �= i ∧ lvl(i) = 0 then
c := i
gtime := now + g

Output: send (gquery)i,j

pre: j ∈ gnbrquery
eff: gnbrquery := gnbrquery − {j}

if gnbrquery = ∅ then

gtime := now + g ∗ rlvl(i)

Input: receive (gquery)j,i

eff: if p = h(i) then
gqack := j

Output: send (ack gquery)i,j

pre: gqack = j
eff: gqack := ⊥

Input: receive (ack gquery)j,i

eff: if c �= ⊥ ∧ p = ⊥ then
p := j

Output: send (grow)i,j

pre: now = gtime ∧ c �= ⊥ ∧
((j = p ∧ p ∈ nbr(i)) ∨ (j = h(i) ∧ p = ⊥))

eff: if p = ⊥ then
p := h(i)

gtime := ∞

Input: receive (grow)j,i

eff: c := j
if lvl(i) = MAX then

p := i
if p = ⊥ then

gnbrquery := nbr(i)

Fig. 1. Stalk protocol: grow actions at process i

4.1 Brief Summary of Stalk

For achieving scalability, Stalk employs a hierarchical structure by using a hi-
erarchical partitioning of the sensor network into clusters based on radius. The
tracking structure is a path rooted at the highest level of the hierarchy. Each pro-
cess in the tracking path has at most one child, either at its level or one below it in
the hierarchy, and the mobile object resides at the leaf of the tracking path, at the
lowest level. Each process in the path points to a process that is generally closer
to the object and has more recent information about its location.

210 M. Demirbas and A. Arora

Input: no objecti

eff: if lvl(i) = 0 ∧ c �= ⊥ then
c := ⊥
stime := now + s

Output: send (shrink)i,j

pre: now = stime ∧ c = ⊥ ∧ j = p
eff: p := ⊥

stime := ∞

Input: receive (shrink)j,i

eff: if c = j then
c := ⊥
stime := now + s ∗ rlvl(i)

Fig. 2. Stalk protocol: shrink actions at process i

We implement move-triggered updates to the tracking path by means of two
operations, grow and shrink. The grow operation enables a path to grow from
the new location of the object to increasingly higher levels of the hierarchy and
connect to the original path at some level. The shrink operation cleans branches
deserted by the object. Shrinking also starts at the lowest level and climbs to
increasingly higher levels.

A hierarchical partitioning of a network inevitably results in multi-level cluster
boundaries: even though two processes are neighbors they might be contained in
different clusters at all levels (except the top) of the hierarchy. If a process were
to always propagate grows and shrinks to its clusterhead, a small movement of
the object back and forth across a multi-level cluster boundary could result in
work proportional to the size of the network rather than the distance of the
move. To resolve this “dithering” problem, Stalk allows one lateral link per level
in our tracking path. A process occasionally connects to the original path with
a lateral link to a neighboring process rather than by propagating a link to its
parent in the hierarchy. Stalk limits the lateral link count per level in order not
to upset the locality properties of the find operation.

To implement Tracker, each process i maintains a child pointer c, a parent
pointer p, a set gnbrquery to keep track of which neighbors it has send a query
in the last invocation of grow, a variable gqack to keep track of which neighbor
to reply to, a grow timer gtime, and a shrink timer stime. In the initial states,
i.c = i.p = ⊥ and i.gtime = i.stime = ∞ for all i. The grow actions are
presented in Figure 1 and the shrink actions are presented in Figure 2.

In order to correct for the case where a process i may have a valid child but
no parent or a valid parent but no child, Stalk uses two simple actions as in
Figure 3. In order to detect and dissociate a child at process i, Stalk employs a
heartbeat mechanism as in Figure 4. The actions in Figure 3 are stateless (they
do not introduce any new state), and the actions in Figure 4 introduces only one
variable (a soft-state variable) to keep track of a timeout.

An Application of Specification-Based Design of Self-stabilization 211

Internal: start-shrinki

pre: (c = ⊥ ∧ p �= ⊥
∧ stime /∈ [now, now + s ∗ rlvl(i)])

∨ [p ∈ nbr(i) ∧ c ∈ nbr(i)]
eff: c := ⊥

stime := now + s ∗ rlvl(i)

Internal: start-growi

pre: c �= ⊥
∧ p = ⊥ ∧ gtime /∈ [now, now + g ∗ rlvl(i)]

eff: if lvl(i)= MAX then
p = i

if p = ⊥ then
gnbrquery := nbr(i)

Fig. 3. Stalk protocol: correction actions at process i

4.2 Application of Theorem 1 to Stalk

Stalk provides local specifications for the fault-intolerant tracking program: The
Trackeri automata presented in Figures 1 and 2 corresponds to Ai in Theorem
1. Stalk also provides local and atomic wrappers for each Trackeri: The parallel
composition of the correction actions in Figures 3 and 4 corresponds to Wi in
Theorem 1. Since, in [1], we proved that Trackeri composed with the correction
actions are self-stabilizing, premise 1 is satisfied. Since the correction actions for
the Trackeri automata are all local and atomic (they put Trackeri in a locally-
consistent state in one step), premise 4 is satisfied.

Stalk imposes a static layered structure on the processes: There is no com-
munication from a higher level process to a lower level process; the direction of
communication is from lower level processes to higher level processes. Due to
this structural constraint, the same layered composition structure is applicable
at both the abstract and concrete systems; hence, premise 5 is satisfied.

Next, we consider the refinement of Stalk to the implementation level. In
order for Theorem 1 to be applicable, we need to show that premises 2 and 3
are satisfied by our refinement of Stalk.

Premise 2 asserts that the implementation of the Trackeri automata should be
a refinement from the initial states. Since there are a lot of tool support for ordi-
nary refinements, refinement of the tracking algorithm can be done automatically
via a compiler. For example, the IOA toolkit [12] supports the design, analysis,
verification, and refinement of programs written in I/O automata notation. The
toolkit includes analysis tools such as the IOA simulator [13] and interfaces
to theorem-proving tools [14] as well as compilers for generation of distributed
code in commercial programming languages [15]. Even if the implementation of
Trackeri automata is performed manually, the verification process for ordinary
refinements are, in general, easier than that of fault-tolerance preserving and
compositional refinements. Since an ordinary refinement from initial states of

212 M. Demirbas and A. Arora

Output: send (heartbeat)i,j

pre: now = next ∧ j = p

eff: next := now + b ∗ rlvl(i)

Input: receive (heartbeat)j,i

eff: if c = ⊥ then c := j
if c = j then

timeout := now + (b + 2δm/r) ∗ rlvl(i)

Internal: timeout expirei

pre: now = timeout ∧ c �= ⊥ ∧ c �= i
eff: c := ⊥

Internal: heartbeat seti

pre: p �= ⊥ ∧ next /∈ [now, now + b ∗ rlvl(i)]

eff: next := now + b ∗ rlvl(i)

Internal: timeout seti

pre: c �= ⊥ ∧ c �= i

∧ timeout /∈ [now, now + (b + 2δm/r) ∗ rlvl(i)]

eff: timeout := now + (b + 2δm) ∗ rlvl(i)

Fig. 4. Stalk protocol: heartbeat actions at process i

the Trackeri automata is sufficient, one does not have to consider refinements
from every state for the purposes of this implementation.

Premise 3 asserts that the abstract wrappers should be everywhere refined.
Since sensor nodes [16] have a single thread of control, the concrete level wrap-
pers are made atomic easily by making them to run till completion upon invo-
cation. Hence, if we prove self-stabilization of the concrete wrappers, then this
implies that the concrete wrappers are everywhere refinements of the abstract
ones. Since the wrappers are small and simple, their proof of self-stabilization
can be achieved easily even manually, without any tool support. Model-checking
based approaches may also be used for this purpose: For example, [17] can ac-
cept a wrapper written in C language as input, and check the self-stabilization
properties of the wrapper.

(Remark:) An interesting research question is the feasibility of automating
the translation process from the abstract wrappers to the concrete wrappers. To
implement the abstract wrapper at the concrete level, the code translator may
use the abstraction function from C to A in the reverse direction. Note that the
wrapper synthesized for the abstract model A is readily available for mapping
back to C because the abstraction function is defined as onto. (In fact in [18]
a similar method is presented for mapping the counterexamples in the abstract
model to counterexamples in the concrete model.) Since abstract wrappers are
often stateless (as in Figure 3), in these cases the translator would only be
responsible for cleaning out the extra implementation state it introduces at the

An Application of Specification-Based Design of Self-stabilization 213

concrete. Soft-state approaches and watch-stop timer based reset approaches
might be useful for automating this cleaning task. (End of remark.)

Since all the premises are satisfied, we can conclude, by a simple application
of Theorem 1, that the resultant implementation of Stalk at the TinyOS level is
self-stabilizing to the abstract specifications.

5 Related Work

In this section, we review the previous work on fault-tolerance preserving refine-
ments and compositional frameworks for self-stabilization.

5.1 Fault-Tolerance Preserving Refinements

Our previous work on stabilization preserving refinements. We have
shown in [5] that refinements in general are not fault-tolerance preserving, that is,
even though A is fault-tolerant, a refinement C of A may not be fault-tolerant.
We are therefore led to considering special classes of refinements. In our pre-
vious research, we have identified two fault-tolerance preserving refinements:
everywhere refinements [5] and convergence refinements [6].

Intuitively speaking, everywhere refinements demand that the implementa-
tions always satisfy the specifications from every state. Further, for effective
design of fault-tolerance in distributed systems, we identify the subclass of local
everywhere refinements: these refinements are decomposable into parts each of
which must always be satisfied by some system process from all of its states
without relying on its environment (including other processes).

Intuitively speaking, convergence refinement implies that even in the unreach-
able states the computations of the concrete system C track the computations of
the abstract system A, although some states that appear in the computations of
A may disappear in the computations of C, and hence, C preserves convergence
properties (e.g., stabilization) of A.

In contrast to previous work on fault-tolerance preserving refinements, we
have shown that the refinements we have identified have nice compositionality
properties making them suitable for specification-based design of fault-tolerance.
For example, convergence refinement enables a non-stabilizing implementation
C to be made stabilizing without knowing the implementation details of C but
knowing only an abstract specification A that C satisfies. More specifically, given
C that is a convergence refinement of A, first stabilization of A is designed by
devising an abstract wrapper W for A. Stabilization of C is then achieved by
adding to C any convergence refinement of W ; the refined wrapper is oblivious
to the implementation details of C.

The lightweight method we present in this paper enables the use of ordinary
refinements (for which a lot of compiler/tool support exists) in the specification-
based design of stabilization in lie of an everywhere or convergence refinement.

Method by Z. Liu and M. Joseph. Liu and Joseph [7] have considered
designing fault-tolerance via transformations. In their work, an abstract program

214 M. Demirbas and A. Arora

A is refined to a more concrete implementation C and then based on the refined
program C and the fault actions F that are introduced in the refinement process,
further precautions (such as using a checkpointing & recovery protocol) are taken
to render C fault-tolerant. Liu and Joseph design the tolerance based on the
concrete program, while we design our wrappers based on the abstract program.

Method by L. Lamport and S. Merz. In [8], Lamport and Merz claim that
there is no need for a special technique for formal specification and verification of
fault-tolerance systems, and that refinement of fault-tolerance programs could be
achieved using temporal logic of actions (TLA) and a hierarchical proof method.

Towards this end, they show how a message-passing Byzantine agreement
program (of [19]) can be derived from its high-level specification. (The authors,
however, do not discuss how their example can be generalized into a method
for designing arbitrary fault-tolerant programs.) They first present three spec-
ifications for the Byzantine agreement program: a high-level problem specifica-
tion, a mid-level specification of the algorithm, and a low-level specification for
message-passing model. Then they prove that each specification implements the
next-higher one.

The authors claim that little ingenuity is required for proofs of refinements
since a hierarchical proof strategy is adopted. However, it should be noted that
a considerable amount of ingenuity is still required for coming up with the re-
finement programs in the first place. The authors also admit in the discussion
section of the paper that their method is “not yet feasible for reasoning at the
level of executable code, except in special applications or for small parts of a
system.”

Fault-tolerance preserving atomicity refinements. Fault-tolerance pre-
serving refinements have been studied in the context of atomicity refinement
in [20, 21], whereas in our work we study them in the more general context of
computation-model refinement.

McGuire and Gouda [22] have developed an execution model that can be
used in translating abstract network protocol specifications written in a guarded-
command language into C programs using Unix sockets. Their framework cannot
handle arbitrary state corruptions we considered here, and only allows the fol-
lowing faults: message loss, message ordering, and message duplication.

Semantics of fault-tolerance preserving refinements. Leal [23] has also
observed that refinement tools are inadequate for preserving fault-tolerance. The
focus of his work is on defining the semantics of tolerance preserving refinements
of components.

5.2 Compositional Frameworks for Self-stabilization

Scalable design of stabilization through composition idea has been around for a
long time [10]. In the traditional stabilization by layers approach lower-level com-
ponents are oblivious to the existence of higher-level components, and higher-
level components can read (but not write) the state of a lower-level component.

An Application of Specification-Based Design of Self-stabilization 215

Components can corrupt each other, but only in a predetermined controlled
way since lower-level components cannot be affected by the state of higher-level
ones. Also, the order in which correction must take place is the same direction,
the correction of higher-levels depend on that of lower-levels. Adaptive program-
ming [24] is similar to stabilization by layers, except that the components depend
on an environment that may change. If the environment achieves a fixed point
for a sufficiently long time, the components stabilize with respect to it.

In [25], a compositional framework for constructing self-stabilizing systems is
proposed. The framework explicitly identifies for each component which other
components it can corrupt (corruption relation). Additionally, the correction of
one component often depends on the prior correction of one or more other com-
ponents, constraining the order in which correction can take place (correction
relation). A global reset [26] is potentially avoided and fault-containment is en-
abled when possible by using the correction and corruption relations to check and
block certain components to prevent formation of fault-contamination cycles.

Depending on what is actually known about the corruption and correction
relations, the framework offers several ways to coordinate system correction. In
cases where the correction and corruption relations are in reverse directions,
persistent corruption cycles may be formed: even though all the components are
individually stabilizing, the system may fail to stabilize due to the continuous
introduction of corruptions to the system via these corruption cycles. By em-
ploying blocking coordinators, the framework breaks these malicious cycles. In
cases where both correction and corruption relations are in the same direction,
no cycle forms and there is no need for blocking. By including both correction
and corruption relations, the framework in [25] subsumes and extends other
compositional approaches, such as layered composition, where correction and
corruption relations are to the same direction.

In our paper, while developing lightweight and local refinements for designing
specification-based self-stabilization to tracking, we restricted our work to the
systems where both the correction and corruption relations are to the same direc-
tion in both the abstract and the concrete levels. This way we did not have to deal
with addition of extra coordinators and blocking at the concrete system level.
By adopting the framework in [25] for our refinement method, we can relax our
layered composition assumption and allow arbitrary compositions of processes.
Using the knowledge of correction-corruption relations between the processes,
we can instantiate a corresponding coordinator to ensure that stabilization of
processes compose at the abstract level. In fact, then these coordinators become
part of the wrappers at the abstract, and by refinement of these wrappers we
can achieve stabilization at the concrete level.

6 Concluding Remarks

In this paper we showed that we can use ordinary refinements (for which a lot
of compiler/tool support exists) and still achieve a specification-based design
of stabilization under suitable conditions. To this end, we assumed that (1)

216 M. Demirbas and A. Arora

wrappers are local to each process and are atomic, and (2) the concrete system
preserves the layered composition structure of the abstract system. Using these
two conditions, we showed that an ordinary refinement suffices for the fault-
intolerant application, and a self-stabilization preserving refinement suffices for
the wrappers. Another advantage of our specification-based design is that it
enables a posteriori addition of stabilization. That is, starting with a concrete
implementation C, it is possible to add fault-tolerance to C by first designing
an abstract tolerance wrapper W using solely an abstract specification A of C,
and then adding a concrete refinement W ′ of W to C.

We have illustrated this lightweight method for specification-based design on
the Stalk protocol for wireless sensor networks. We believe that for a rich class
of wireless sensor network applications the two conditions we have identified for
the applicability of our method holds naturally. In future work, we will provide
an actual demonstration of Stalk on the motes as part of our NSF-funded on-
going project on pursuer-evader tracking in wireless sensor networks. Also, we
will investigate other wireless sensor network applications where our method is
applicable for achieving stabilization at the implementation level.

References

1. Demirbas, M., Arora, A., Nolte, T., Lynch, N.: A hierarchy-based fault-local stabi-
lizing algorithm for tracking in sensor networks. In: 8th International Conference
on Principles of Distributed Systems (OPODIS), pp. 299–315 (2004)

2. Crossbow technology, Mica2 platform,
www.xbow.com/Products/Wireless Sensor Networks.htm

3. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc
language: A holistic approach to networked embedded systems. In: PLDI 2003:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, pp. 1–11 (2003)

4. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for network sensors. In: ASPLOS, pp. 93–104 (2000)

5. Arora, A., Demirbas, M., Kulkarni, S.S.: Graybox stabilization. In: Proceedings of
the International Conference on Dependable Systems and Networks (ICDSN), pp.
389–398 (July 2001)

6. Demirbas, M., Arora, A.: Convergence refinement. In: Proceedings of the Inter-
national Conference on Distributed Computing Systems (ICDCS), July 2002, pp.
589–597 (2002); Best paper(1st/335)

7. Liu, Z., Joseph, M.: Transformations of programs for fault-tolerance. Formal As-
pects of Computing 4(5), 442–469 (1992)

8. Lamport, L., Merz, S.: Specifying and verifying fault-tolerant systems. In: Lang-
maack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994,
vol. 863, pp. 41–76. Springer, Heidelberg (1994)

9. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Heidelberg (1990)

10. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

11. Demirbas, M.: Scalable design of fault-tolerance for wireless sensor networks. PhD
thesis, The Ohio State University (2004)

www.xbow.com/Products/Wireless_Sensor_Networks.htm

An Application of Specification-Based Design of Self-stabilization 217

12. Garland, S.J., Lynch, N.A.: Using i/o automata for developing distributed systems.
Foundations of Component-Based Systems, 285–312 (2000)

13. Kaynar, D.K., Chefter, A., Dean, L., Garland, S., Lynch, N., Win, T.N., Ramirez,
A.: The ioa simulator. Technical Report 843, MIT Laboratory for Computer Science
(2002)

14. Garland, S., Guttag, J.V., Horning, J.: An overview of larch. Functional Program-
ming, Concurrency, Simulation and Automated Reasoning (1993)

15. Tauber, J.A.: Verifiable Code Generation from Abstract I/O Automata. PhD the-
sis, MIT (2003)

16. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for network sensors. In: ASPLOS, pp. 93–104 (2000)

17. Hatcliff, J., Dwyer, M.B., Pasareanu, C.S., Robby: Foundations of the bandera
abstraction tools, pp. 172–203 (2002)

18. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification, pp. 154–169 (2000)

19. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (1982)

20. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. In:
Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 254–268. Springer, Heidelberg
(1999)

21. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. In: International Symposium on Dis-
tributed Computing, pp. 223–237 (2000)

22. McGuire, T.M.: Correct implementation of network protocols. PhD thesis, Univer-
sity at Texas at Austin (2004)

23. Leal, W.: A Foundation for Fault Tolerant Components. PhD thesis, The Ohio
State University (2001)

24. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Transactions on Software
Engineering 17, 911–921 (1991)

25. Leal, W., Arora, A.: Scalable self-stabilization via composition and refinement.
In: Proceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS). IEEE, Los Alamitos (2004)

26. Arora, A., Gouda, M.G.: Distributed reset. IEEE Transactions on Computers 43(9),
1026–1038 (1994)

Our Brothers’ Keepers: Secure Routing with High
Performance�

Alex Brodsky and Scott Lindenberg

University of Winnipeg
515 Portage Ave, Winnipeg, MB, Canada, R3B 2E9

{abrodsky,slindenb}@acs.uwinnipeg.ca

Abstract. The Trinity [1] spam classification system is based on a distributed
hash table that is implemented using a structured peer-to-peer overlay. Such an
overlay must be capable of processing hundreds of messages per second, and
must be able to route messages to their destination even in the presence of fail-
ures and malicious peers that misroute packets or inject fraudulent routing infor-
mation into the system. Typically there is tension between the requirements to
route messages securely and efficiently in the overlay.

We describe a secure and efficient routing extension that we developed within
the I3 [2] implementation of the Chord [3] overlay. Secure routing is
accomplished through several complementary approaches: First, peers in close
proximity form overlapping groups that police themselves to identify and miti-
gate fraudulent routing information. Second, a form of random routing solves the
problem of entire packet flows passing through a malicious peer. Third, a message
authentication mechanism links each message to it sender, preventing spoofing.
Fourth, each peer’s identifier links the peer to its network address, and at the same
time uniformly distributes the peers in the key-space.

Lastly, we present our initial evaluation of the system, comprising a 255 peer
overlay running on a local cluster. We describe our methodology and show that
the overhead of our secure implementation is quite reasonable.

Keywords: Secure routing, peer authentication, distributed hash tables.

1 Introduction

Systems such as Trinity [1], LOCKSS [4], and others are based on distributed hash ta-
bles that are implemented on top of peer-to-peer structured overlays. These overlays
differ from better known peer-to-peer systems such as BitTorrent in three fundamental
ways. First, these overlays are closed, meaning that only authorized hosts may join the
overlay. Second, these overlays must be secure and function even in the presence of fail-
ures, denial of service attacks, and malicious peers. Third, performance is paramount,
meaning that each peer in the these overlays must be able to forward hundreds of mes-
sages per second.

Although securing closed overlays seems more manageable than the task of securing
open overlays, the task presents several challenges. First, identifying, authenticating and

� This research was supported by an NSERC Discovery grant.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 218–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Our Brothers’ Keepers: Secure Routing with High Performance 219

authorizing peers and authenticating the messages that they send is not easy because
the mechanisms must be fault tolerant, allow revocation, and must not significantly
impact performance. Second, securely routing messages, dealing with host and network
failures, and most importantly, dealing with malicious peers and the fraudulent routing
information that they inject into the overlay is challenging in itself, let alone without
significantly impacting performance.

As part of the Trinity project [1], we have designed, implemented, and tested a secure
closed overlay based on the I3 [2] Chord [3] implementation. Our design comprises a
distributed and fault tolerant identification, authentication, and authorization mecha-
nism; a key assignment scheme that encodes a peer’s network location yet ensures that
the keys are uniformly distributed in the key space; a self-policing scheme based on
groups of local peers; and a form of random routing that ensures that no (malicious)
peer is a choke-point between any two other peers.

In addition to describing our approaches, we present a performance evaluation,
which was performed on a local cluster that hosted overlays consisting of 255 peers.
We compare the performance of our system in “secure” and “insecure” modes, and
show that the performance penalty for secure operation is acceptable.

The rest of the paper is organized as follows: Section 2 describes our assumptions and
the Chord protocol. Section 3 describes the three parts of our approach and Section 4
describes our evaluation of the system. Lastly, Section 5 and 6 describe related work,
and discuss future work.

2 Preliminaries

We selected the Chord [3] structured overlay to provide lookup services for the Trin-
ity [1] system because Chord has good performance characteristics and provides control
over the location of peers within the overlay, making it easier to secure [5,6].

The Chord [3] overlay structure assigns each peer a unique key, k, from a 160-bit
key-space1 and organizes the peers into a single ring in the numerical order of their
keys. The predecessor and successor of key k are the keys kp and ks, respectively,
belonging to peers in the ring, such that k − kp and ks − k, respectively, are minimal
(see Figure 1). Intuitively, the peer to whom key k is assigned is located between its
predecessor and successor, the peers to whom the keys kp and ks are assigned. If a key
k is not assigned to a peer in the ring, then the peer whose key is the successor to k is
responsible for the key. Consequently, each peer is responsible for all the possible key
values between it and its predecessor.

When a peer joins the ring, it locates its position within the ring by sending a “find
successor” request with its own key, k, to a “well known” peer that is already in the
ring. The request is routed to the current predecessor of k, whose successor is therefore
also the successor of k. The predecessor replies to the new peer, informing it of both
the successor and itself. The new peer then informs the successor and predecessor of
its existence and assumes its location in ring. Lastly, the peer builds its routing table,
called a finger table.

1 All operations on the keys are performed mod 2160.

220 A. Brodsky and S. Lindenberg

s

f1

f2

f3

f4

f5 p

q

the route from p to q

g

h

r

Fig. 1. The peers labeled fi are in p’s finger table, peer g is in peer f5’s finger table, and peer h
is in peer g’s finger table. Peers r and s are the predecessor and successor of peer p

The finger table is used by the peer to forward a message toward its eventual desti-
nation. The finger table comprises keys of select peers in the ring. Typically, the table
contains O(log N) keys of peers that are 1

2i of a ring away, i = 1 . . . log(N), where
N is the number of peers in the ring (see Figure 1). To forward a message to the peer
responsible for key k, the peer with the closest preceding key to k is selected from the
finger table, and the message is forwarded directly to that peer. Thus, the distance to
the destination peer is decreased by at least half, and after at most O(log N) such hops,
the message arrives at the destination. If the closest preceding peer is the current peer,
then the message is forwarded directly to the peer’s successor, its destination.

The finger table is populated by performing additional “find successor” queries with
key values of the form k + 2i, for 0 < i < 160. Additional ongoing “find successor”
queries, at regular intervals, are used to update the finger table as well as the peer’s suc-
cessor and predecessor. Also, a simple heart-beat mechanism tracks when peers leave
the ring.

Unfortunately, the system as described, is susceptible to many attacks. First, the over-
lay uses an unreliable message-based transport protocol, User Datagram Protocol (UDP),
that is susceptible to spoofing because the source address of a message can easily be
forged. Thus, the source of the message cannot be (reliably) determined. Second, the

Our Brothers’ Keepers: Secure Routing with High Performance 221

system, as described, allows any host to become a peer, which is problematic for a closed
overlay and can lead to the admittance of malicious peers. Third, as a result of the first two
weaknesses, the overlay is susceptible to denial of service attacks because large numbers
of messages and requests can be injected into the overlay by external hosts.

Fourth, the overlay relies on the correct behaviour of all of its constituents. For ex-
ample, all peers must correctly forward and reply to “find successor” requests. Mali-
cious peers can inject fraudulent routing information into the overlay by replying with
incorrect “find successor” replies, dropping requests, or misdirecting the requests. Con-
sequently, a few collaborating malicious peers could cause segments of the ring to “drop
out”. This is a problem even if peers are initially identified and authenticated prior to
joining because peers may be compromised and an initially nonmalicious peer may
become malicious.

We assume that all malicious hosts are computationally bounded and cannot forge or
decrypt messages that are signed or encrypted using the standard 2048-bit RSA public
key system. We make no assumptions about the number of malicious hosts—machines
that have not joined the ring—or the security of the channel, meaning that malicious
hosts may be able to view the messages as they transit the Internet. This corresponds
to the resources available to spammers today in the form of large bot-nets. Correspond-
ingly, we do assume that such malicious hosts do not have control over the IP address
that they are assigned.

We assume that a small fraction (5%) of peers—hosts that are authorized to join the
ring—are malicious; either from the start or because they were compromised at some
point after joining. We can make this assumption because the peers will be set up and
monitored by qualified system administrators, and because the peers will be checked
by the ring’s administrators before they are authorized to join the ring. The challenge
then, is to limit the ability of the malicious peers to collaborate and disrupt the overlay,
to detect malicious peers, and evict them from the overlay.

3 Design and Implementation

Our implementation is an extension of the I3 [2] code-base. Our implementation com-
prises five parts: (i) a key assignment scheme that links each peer’s key with its network
address2 while at the same time uniformly distributing the peers’ keys in the ring; (ii) a
distributed identification, authentication, and (revocable) authorization mechanism that
allows the overlay to control what peers are admitted into the ring; (iii) a message au-
thentication mechanism that links each message to its sender; (iv) a self-policing mech-
anism based on overlapping groups composed of proximate peers; and (v) a simple
form of random routing that avoids the possibility of any peer becoming a choke point
between two other peers.

3.1 Key Assignment

As was observed in [5] and [6], it is harder for malicious peers to collaborate when they
are uniformly distributed in the ring than when they are clustered. Consequently, peers

2 Both IP address and port number.

222 A. Brodsky and S. Lindenberg

should be assigned keys from a uniform distribution. Thus, prior to joining, each peer is
expected to choose a key from the uniform distribution on the key space. However, there
is nothing that prevents malicious peers from choosing keys that facilitate collaboration.
Furthermore, a randomly selected key, only encodes the peers position within the ring,
not the network, which another peer would need to contact it directly. Lastly, the choice
of the peer’s network address is typically limited and in most cases beyond the control
of the peer, malicious or otherwise.

We leverage this restriction to assign keys to peers so that the peers have no choice
in their key, the key is unique, the key encodes a peer’s network address, and the key
appears to be chosen from the uniform distribution on the key space. To determine its
key a peer concatenates its IP address and port number, both in network byte order, to
create a 6 byte string. This string is passed through the SHA-1 function, generating a
20 byte hash. The hash is the same length as a key, 20 bytes, and appears as if it was
chosen from the uniform distribution on the key space.3 Lastly, the IP address and the
port number replace the 6 least significant bytes of the hash, as suggested in [6].

The resulting 20 byte key, can easily be validated by extracting the 6 least significant
bytes, passing them from the SHA-1 function, and comparing the 14 most significant
bytes of the resulting hash and the key—they should match. The 14 most significant
bytes of the key look as if they were drawn from a uniform distribution, ensuring that the
peers are uniformly distributed throughout the ring. Lastly, the key uniquely identifies
each peer because the IP address of each peer is necessarily unique. Thus, each peer
can be uniquely identified.

3.2 Distributed Identification, Authentication and Authorization

A peer must be identified, authenticated, and authorized before it can join the overlay.
The peer’s key uniquely identifies the peer, but it does not authenticate the peer, which
is a prerequisite for authorization. Since the maliciousness of a peer may be discovered
only after it joins the ring, authorization must be revocable, in order to facilitate the
excommunication of such peers.

Authentication is accomplished by using a public key signature system—each new
peer generates a public-private key-pair. A peer authenticates a message by first em-
bedding its 20-byte key into the message and then signing it. However, two problems
remain: distribution of the public key, and the authorization of the peer. Both problems
are solved simultaneously by leveraging the Domain Name System (DNS) [7,8].

Each ring is identified by a domain name in the DNS database and each authorized
peer in the ring has corresponding a TXT entry within the domain, identified by the
peer’s key and storing a certificate that contains the peer’s public key. The authority
responsible for authorizing peers is also responsible for signing the certificates and for
adding or removing the TXT entries.

When a peer receives a message from another peer, it checks its cache for the sender’s
public key, if present then the sender is authorized to participate in the ring. Otherwise,
the receiver performs a DNS lookup for the sender’s key in the ring’s domain. If found,

3 In reality the hash is uniformly chosen from key subspace of cardinality 248, the size of the
input string.

Our Brothers’ Keepers: Secure Routing with High Performance 223

the sender’s public key is added to the cache and the sender is deemed to be authorized.
If not, a negative entry is added to the cache, causing the peer to ignore all future
messages from the sender until the negative entry expires. Authorizations are revoked
by removing the corresponding TXT entry from the DNS database and informing all
peers of the revocation via a broadcast.

We leverage the DNS system because it has proven to be relatively robust and fault
tolerant. In fact, robustness can be increased by simply adding more name servers.
Furthermore, a DNS query is only needed when a new peer joins. In theory, peers could
broadcast the certificates they receive from their DNS queries, informing the ring of the
joining peer. Thus, an attack on the DNS system would only prevent new peers from
joining the ring. One problem with our approach is that authenticating each message
using a public key signature is prohibitively expensive.

3.3 Message Authentication

A message is linked to its sender because it contains the sender’s key and then signed
by the sender. Since the keys are unique and contain the sender’s network address, each
message can be traced to its origin. Consequently, if fraudulent messages are detected,
the sender can be identified with certainty and excommunicated.

Unfortunately, signing and verifying all messages using a public key signature sys-
tem is expensive. For example, to determine the overhead of using a public key signature
system, we ran a two peer ring on a single 1.60GHz Intel Xeon E5310 (4-core) server
with 2 gigabytes of RAM, and had one peer ping the other. This nullified the any poten-
tial network related slowdown, and allocated one CPU to each peer, thus avoiding any
issues associated with sharing a CPU. Without message authentication, the system per-
formed about 4000 pings per second—approximately 8000 messages per second. With
message authentication, using public key signatures, the number of pings per second
dropped to 15—a slowdown by a factor of 300!

We solve this problem by using message authentication codes (MAC) as the default
authentication mechanism. The Chord overlay structure exhibits good temporal locality
with respect to communication, meaning that if a peer communicates directly with an-
other peer, it will do so repeatedly in the future. The first time two peers communicate
directly, they exchange shared secret keys (using public key encryption), and use shared
keys to authenticate all messages to each other. Using HMAC based authentication, the
performance of our system went back up to about 3500 pings per second.

3.4 Our Brothers’ Keepers

Chord overlay structure relies on peers behaving properly: forwarding requests that
they cannot satisfy and replying truthfully to requests that they can satisfy. However, if
a malicious peer does not forward requests, or even worse, misdirects the requests or
sends fraudulent replies, the overlay structure can be subverted. In particular, maligning
the “find successor” requests, which are used by peers to find their position within
the ring and construct finger tables, can create loops and partitions within the ring,
rendering the overlay dysfunctional. That is, a few collaborating malicious peers could
cause segments of the ring to “drop out”.

224 A. Brodsky and S. Lindenberg

Realistically, we can neither ensure that no malicious peer will ever join, nor can
we ensure that no peer will ever be compromised. Malicious peers are distinguished
by their behaviour that, when detected, can be quashed by excommunicating the peer.
Thus, by increasing the system’s ability to detect malicious behaviour, the amount of
damage caused by a malicious peer can be limited. Since our key assignment scheme
ensures that with high probability two malicious peers will not be near each other in the
ring, we use a peer group approach to improve detection of malicious behaviour, i.e.,
the peer’s proximate peers keep it honest.

Each peer in the ring, is associated with a peer group of size g, where g is a small odd
number, such as 5, 7, 9, 11, etc. The group comprises the peer itself—the group leader—
and g − 1 of its closest peers: g−1

2 closest preceding peers and g−1
2 closest succeeding

peers. Thus, each peer belongs to g overlapping groups of size g. Furthermore, given
our assumption about the uniform distribution of malicious peers, the chance of a group
having multiple malicious peers is small.

When a new peer joins the ring, it queries its predecessor and successor for their
group memberships, constructs its own group membership list from the responses, and
then queries the other peers in its group to confirm their membership. On an ongoing
basis, the peers in a group query each other’s membership lists, updating them as peers
join or leave. In closed overlays, particularly in the case of Trinity, we assume that
the rate at which peers join and leave the ring is relatively low. Hence, a peer’s group
membership list will not change often.

In fact, a peer is only added to a group only after it has been verified by the group’s
leader, ensuring that group lists only contain valid peers. These group lists also provide
a fast mechanism for finding a new successor or predecessors if the current one leaves
(or fails) the ring.

A peer’s group membership list, should be consistent with those of the group’s
members, e.g., if the group of peer p is (n, o, p, q, r), then peer q’s group should be
(o, p, q, r, s). Thus, if a peer sends a group list that is inconsistent with the lists of other
group members, it is considered malicious, or at least untrustworthy. Consequently, ma-
licious peers cannot easily send fraudulent “find successor” responses about their group
members, because similar queries to their neighbours would unmask them. The result
is that peers cannot send out false “find successor” replies to any of its neighbouring
peers without being excommunicated.

However, it is also necessary to ensure that remote peers are also honest, i.e., those
peers that are not within a peer’s group. This is accomplished by leveraging the group
structure. Specifically, a peer’s “find successor” response is be verified by querying a
member of its peer group, and is based on the fact that peers in the same group will
have similar finger tables.

Recall, that a peer’s ith finger table entry contains the successor to key k + 2i, where
k is the peer’s key. Assuming that peers are uniformly distributed in the ring, if peers
with keys k and k′ are adjacent, then the successors to k + 2i and k′ + 2i will likely
be close to each other in the ring, if not the same peer. Thus, there will be considerable
overlap between the groups associated with the ith finger table entries of the two peers.
Consequently, a “find successor” response can be verified by resending the query to a
member of the responder’s group.

Our Brothers’ Keepers: Secure Routing with High Performance 225

To facilitate this approach, and to verify the consistency of the groups associated
with the finger table entries, our implementation uses an expanded finger table that
stores the keys of the peer’s entire group rather than just the peer’s key—the finger
table stores g keys per entry. Furthermore, a peer’s “find successor” response includes
the keys of the peer’s entire group. Since “find successor” queries are sent on an ongoing
basis, the finger table entries are updated and checked on a regular basis. Lastly, storing
entire groups in the finger table, instead of single peers, facilitates the implementation
of a simple randomized routing scheme, mitigating the problem of packet dropping by
malicious peers.

3.5 Randomized Routing

Even if a malicious peer does not send fraudulent routing responses, it can still cause
problem by simply dropping all messages. If a malicious peer is a choke-point between
two other peers—all messages from one peer to the other are routed through it—then
none of the messages may get through. Detecting this behaviour is problematic because
the I3 Chord implementation and many other overlay systems use lightweight connec-
tionless unreliable transport protocols, such as UDP. Consequently, it is impossible to
distinguish between poor network connectivity and a misbehaving peer. Fortunately, our
scheme can mitigate both problems. We note that we cannot ensure that no messages
will be lost; only that with high probability, not all the messages will pass through the
same peer, while in transit.

We use a variant of randomized routing [9]. Traditional randomized routing forwards
the message to a randomly chosen peer in the system, and then from that peer to the
destination. This can dramatically increase the latency, particularly if the destination
peer is close to the sender but the randomly chosen peer is far away. Instead, in our
scheme, multiple messages between two peers take different but comparable length
paths, ensuring that a choke-point can not form.

When a message arrives at a peer, the peer classifies the message’s destination as
either local, near, or far. If the destination is local, then the message has arrived at its
destination. If the destination is near, then the message is destined to a neighbour of the
peer and is forwarded directly to its destination. Otherwise, a peer is selected and the
message is forwarded to it.

According to the traditional deterministic forwarding protocol, the peer whose key
most closely precedes the message destination is chosen from the finger table, and the
message is forwarded to this peer. In our implementation, a group is chosen from the
finger table such that the group leader’s most closely precedes the message destination.
Then, a peer is randomly chosen from this group and the message is forwarded to it.4

Since the finger tables of the peers in a group are similar, the route taken between two
peers will differ in the peers that the messages transit. However, as discussed in the
preceding section, these peers are near each other within the ring, implying that the
total number of hops will not vary greatly.

The correctness of the protocol does not change as long as the key of the peer selected
from the finger table precedes the message destination, and since all peers in a group

4 The selection process also ensures that the peer precedes the message destination.

226 A. Brodsky and S. Lindenberg

are, by definition, near each other, the size of each hop is will differ by an additive
constant, resulting in a small variance in the number of hops that a message takes.

Lastly, the malicious peer detection and the random routing scheme depend on the
fact that the routing tables of proximate peers are similar. Consequently, the group size,
g, cannot be too large because the farther a peer is from the group leader, the less similar
is its routing table. Furthermore, using a larger group size requires larger messages and
a larger finger table. At the same time, a group size should be large enough to tolerate
peer failures and ensure that messages have a sufficient number of routes that they can
take. Consequently, a group size of 5 to 15 should suffice.

4 Evaluation

To evaluate the performance of our implementation we used a 255 peer ring running on
a 26 machine cluster running OpenBSD 4.3 and 4.2. One of these machines was an Intel
Xeon X3210 2.13GHz Quad-core based server with 4GB of RAM, which ran 5 peers
on it and served as the name server for the cluster. Each of the remaining 25 machines
was an Intel Pentium 4 2.80 GHz based desktop with 1 GB of RAM. Each of these
desktops ran 10 peers each and all the machines were interconnected via a Cisco WS-
C2924–XL-EN and a Cisco WS-C3548-XL-EN managed switches that were locked at
10 Mb/s half-duplex—the mean latency between any two machines in the cluster was
0.5 milliseconds, with a negligible variance. We performed several different tests to
measure the latency, throughput, and capacity of our implementation in both secure and
insecure modes, in order to compare the overhead associated with secure mode.

4.1 Latency and throughput

We first compared the latency and throughput overhead of secure versus insecure opera-
tion. Since peers regenerate and exchange their shared keys at regular intervals, different
parts of ring had different loads at different times. To compensate for this, a series of
test runs were performed, spanning a sufficiently large time interval, and the minimums
over these test runs were used.

Each test comprises two communicating peers: the initiator, which conducts and
times the test, and the responder, which serves as the other end-point of the commu-
nication. The latency test measures the round trip time of a ping and its echo. The
initiator pings the responder, which echos the ping—both the ping and the echo are
routed through the overlay. The test is repeated sequentially a set number of times and
the count is divided by the total time, yielding the round trip time per ping. The through-
put test measures how fast packets (or messages) can be sent through the overlay. The
initiator sends a throughput request to the responder, indicating the number of packets
the responder should send back. The responder sends the requested number of packets
(through the overlay) as quickly as possible, and the initiator measures the time differ-
ence between the arrival of the first and last packets—the number of packets divided by
the difference is the throughput.

Our evaluation fixed one of the five peers on the 4-core server to be the initiator,
and used the 250 peers running on the 25 desktops as responders. For both latency and

Our Brothers’ Keepers: Secure Routing with High Performance 227

Table 1. Summary statistics of round trip times to peers and packets per second from peers

Latency Throughput
Insecure Op. Secure Op. Relative Insecure Op. Secure Op. Relative
RTT (sec) RTT (sec) Difference Pkts / sec Pkts / sec Difference

Mean 0.002874 0.003457 20.2% 6148 4946 19.4%
Median 0.002897 0.003483 20.2% 6389 5087 20.4%
Maximum 0.003542 0.004282 20.9% 7794 6566 15.8%
Minimum 0.000759 0.000880 15.9% 3107 2643 14.9%
Std. Dev. 0.000335 0.000411 N/A 1164 930 N/A

throughput measurements, the initiator performed 12 test series consisting of 10 test
runs that consisted of 250 tests, once for each peer. Each latency test performed 10 pings
at a time and each throughput test had the responder send back 1000 packets. Each series
takes the minimum measurement for each peer over the 10 runs. The minimums for each
peer from the 12 series are averaged to yield the latency or throughput measurement.

Table 1 displays the mean, median, maximum, minimum, and standard deviation
round trip times and throughput measured for all 250 peers. The table shows the mea-
surements for both insecure mode operation and secure mode operation, and the over-
head of the secure mode.

The measured latency in secure mode is 20% greater than in insecure mode. Al-
though, this seems high, it is important to remember that there were 10 peers running
on each host, making the system CPU bound and that the time difference, 0.6 millisec-
onds, is negligible compared to the typical latency between two hosts in the Internet.

The throughput in secure mode is also on average 20% lower. This is due to the cost
of authenticating messages: the sender has to sign each message and the receiver has to
verify the message. Since message authentication is a CPU bounded task, its effect will
be less when only one peer is running on each server.

It is more instructive to view the round trip times for each peer and throughput from
each peer in a sorted order. The graph in Figure 2 shows the round trip times to all the
peers for both insecure and secure operation modes, in ascending order of times mea-
sured in insecure mode. The graph in Figure 3 shows the throughput from all the peers
for both insecure and secure operation modes, in descending order of times measured
in insecure mode.

Several artifacts are immediately visible in Figure 2: First, four peers have much
lower round trip times. These peers are the successors and predecessors of the peer per-
forming the ping, and hence both the ping and the response only take one hop. Second,
there is large jump in round trip times for both insecure and secures modes; approx-
imately, 0.0025 and 0.003 seconds respectively. Since the minimum latency between
two peers in the cluster is 0.0005 seconds, this means that pings to and from all the
other peers take between 6 and 9 hops, which makes sense for a ring of 255 peers.
Lastly, and most importantly, the relative difference in latency between insecure and
secure operation remains fixed, at 0.06 milliseconds per hop.

Figure 3 also exhibits a couple important features. First, the graph has a step feature,
corresponding to the distances between the initiator and the responders. The closer a
responder is to the initiator, the higher the measured throughput. Second, the relative

228 A. Brodsky and S. Lindenberg

Fig. 2. Round trip times to peers

Fig. 3. Throughput from peers

decrease in throughput between insecure and secure operation remains relatively con-
stant. As before the primary reason for the reduction is the cost of message authentica-
tion and is noticeable because 10 peers were running on each singe-core machine.

4.2 Capacity

The capacity of an overlay is the measure of the number of messages that the system
can deliver per unit time. To measure the system’s capacity we implemented a game of
hot-potato over the overlay: A set number of messages (potatoes) are injected into the
system. The potatoes are randomly passed from peer to peer, and counter in each potato
tracks the number of times the potato is passed. By varying the number of concurrent
potatoes in the system, we control the system’s load.

When a peer receives a potato, it increments the potato’s counter, generates a random
key, and sends the potato to the peer responsible for the random key. To ensure that no
potato is dropped, the receiving peer acknowledges the potato, and the sender acknowl-
edges the acknowledgment. Only after receiving the second acknowledgment does the

Our Brothers’ Keepers: Secure Routing with High Performance 229

Table 2. Number of passes per second that a message takes

of msgs 10 20 30 40 50 60 70 80 160

Insecure Mode Operation
Mean 163 134 107 86 72 60 51 45 23
Median 163 134 106 86 72 60 51 45 22
Std. Dev. 3.3 2.8 2.1 2.3 2.0 1.6 1.4 1.8 2.4
Maximum 172 141 113 92 77 65 54 50 33
Minimum 156 127 103 81 67 56 48 42 19

Secure Mode Operation
Mean 138 115 93 76 62 53 45 40 20
Median 137 115 94 76 62 53 45 39 19
Std. Dev. 3.4 2.0 2.1 1.6 1.4 1.3 1.6 1.8 2.6
Maximum 147 120 98 79 68 55 49 46 29
Minimum 131 109 89 71 58 47 42 36 15

Fig. 4. Capacity of overlay.

receiver commence the next potato pass. If potato’s originator receives it, and the potato
has been in the system for a minimum amount of time, e.g., 60 seconds, the number of
passes per second for the potato is computed, by dividing the value of the potato’s pass
counter by the number of seconds that the potato was in the system. The potato’s time to
live counter is then decremented, and if nonzero, the potato’s pass counter is reset and
the potato is injected into the system again. This ensures a period of consistent load.

In each of the runs, the first measurement from the first 75 ejected potatoes was
used. Table 2 exhibits the mean, median, standard deviation, maximum, and minimum
number of passes per second that a potato achieved under different system loads: 10,
20, 30, 40, 50, 60, 70, 80, and 160 potatoes in the system. Note: a pass consists of a
3-message exchange between two peers in the system and message delivery may take
multiple hops within the overlay.

As the load increases, the number of passes per second of a potato decreases because
the likelihood that a peer may need to process multiple potatoes at once increases.
However, passes per second of a potato does not yield a measure of the capacity of
the system as a whole. The capacity of the system is the number of passes per second
that the system performs over all. This is equal to the average number of passes per
second multiplied by the number potatoes in the system.

Figure 4 exhibits the capacity of the system for both insecure and secure operation
modes. The capacity of the system is 3600 and 3150 passes per second in insecure and

230 A. Brodsky and S. Lindenberg

secure operation modes, respectively. In both cases the system becomes saturated at 50
potatoes, but capacity does not degrade as the number of potatoes increases. The relative
difference in capacity is 12.5%, and is predominately affected by the CPU bounded task
of message authentication.

As the size of the ring increases, the number of hops per pass will increase loga-
rithmically. Consequently, the number of passes per second will increase because the
number of hops per pass grows at a much slower rate than the number of peers in the
ring. Thus, the capacity of the system should increase as the size of the ring grows.

5 Related Work

The challenge of securing peer-to-peer systems has been around since their advent. Sit
and Morris [5] first identified a set of design principles for securing peer-to-peer systems
and described a taxonomy of various attacks against them. This work was extended
by Wallach [10] who investigated the security aspects of systems such as CAN [11],
Chord [3], Pastry [12], and Tapestry [13], and discussed issues such as key assignment,
routing, and excommunication of malicious peers.

Castro et al. [6] proposed several approaches to securing peer-to-peer overlays. They
proposed to delegate assignment of keys to trusted certification authorities, that would
ensure that the keys are chosen at random, and that each peer is bound to a unique key,
with the peer’s IP embedded in the key. To securely route messages, they proposed to
use constrained routing tables, which contain keys from specific locations in the over-
lay. In our case Chord already constrains a key’s location within the overlay, obviating
the need for constrained routing tables. In fact, our self-policing and random routing
mechanisms leverage this constraint.

Castro et al. [6] also proposed a routing failure test that tries to determine what nodes
are malicious. Their approach also sends multiple copies of the message through diverse
routes to ensure message delivery. Our approach is similar but less resource intensive.
Our system uses the peer groups to detect faulty routing information, and to ensure that
no peer is a choke-point between two other peers. Our system does not attempt to ensure
the delivery of all messages, but instead attempts to ensure that some messages will be
delivered.

There are many different ways to secure peer-to-peer systems. For example systems
such as LOCKSS [4], use majority voting replicas and computationally rate-limiting
cryptographic puzzles [14]. Unfortunately, these approaches severely impact system
performance and are not practical in the context where good performance is a necessity.

Lastly, some of the mechanisms used in our extension are also used in the design
of accountable systems [15]. The goal of accountable systems is to detect and provide
unforgable proof of a peer’s misbehaviour. Such proof is a necessary component of any
system that allows for the excommunication of malicious peers. PeerReview [15] uses
witness peers to validate a peer’s behaviour and to construct a proof of a peer’s misbe-
haviour. However, unlike in our system, the witnesses are not proximate and compare
the log of a peer’s actions to a simulation of the peer. In our system the veracity of a
peer’s response can be checked by comparing it to that of its neighbours and does not
require a simulation of the peer.

Our Brothers’ Keepers: Secure Routing with High Performance 231

6 Conclusion and Future Work

We have designed and implemented a secure and efficient extension to the I3 [2] imple-
mentation of the Chord structured overlay [3]. Our extension is aimed at closed over-
lays in which membership is tightly controlled. This context requires mechanisms for
peer identification, authentication, and authorization, mechanisms for message authen-
tication, and mechanisms to mitigate the behaviour of malicious peers in the overlay,
which are unavoidable.

Our implementation uses a simple hashing scheme to generate keys that are linked
to peer’s network address, and are uniformly distributed in the key space. The keys are
embedded into messages, linking each message to its sender via an efficient two-part
authentication mechanism, combining public key and HMAC message authentication.
Secure routing is implemented via self-policing peer groups that force malicious peers
to either behave properly or face detection. Lastly, these groups are leveraged for a
simple random routing scheme that prevents choke-points within the overlay.

Our evaluation, which was performed on a local cluster, has demonstrated that our
implementation’s overhead, of about 20%, is primarily due to CPU bounded operations.
We believe that this effect will significantly decrease under normal conditions in the
larger Internet context where latency will dominate, and where multiple peers are not
running on the same host.

To validate this hypothesis, we intend to perform a more realistic evaluation using
the Planet-Lab platform, which spans the world and will allow us to test much larger
overlays. We are in the process of implementing the Trinity [1] e-mail classification sys-
tem on top of our secure overlay. This will provide additional opportunities to identify
and solve performance bottlenecks in our implementation.

References

1. Brodsky, A., Brodsky, D.: A distributed content independent method for spam detection. In:
Proc. of the 1st USENIX Workshop on Hot Topics in Understanding Botnet (2007)

2. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet indirection infrastructure.
IEEE/ACM Transactions on Networks 12(2), 205–218 (2004)

3. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proc. of the ACM SIGCOMM 2001 Con-
ference (2001)

4. Maniatis, P., Rosenthal, D., Roussopoulos, M., Baker, M., Giuli, T., Muliadi, Y.: Preserving
peer replicas by rate-limited sampled voting. In: Proc. of the 19th ACM Symposium on
Operating Systems Principles (2003)

5. Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash tables. In: Dr-
uschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429. Springer,
Heidelberg (2002)

6. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.: Secure routing for struc-
tured peer-to-peer overlay networks. In: Proc. of the 5th ACM Symposium on Operating
System Design and Implementation (2002)

7. Mockapetris, P.: RFC 1034 – Domain Names - Concepts and Facilities. Internet Engineering
Task Force (1987)

232 A. Brodsky and S. Lindenberg

8. Mockapetris, P.: RFC 1035 – Domain Names - Implementation and Specification. Internet
Engineering Task Force (1987)

9. Leighton, T., Maggs, B., Ranade, A., Rao, S.: Randomized routing and sorting on fixed-
connection networks. J. Algorithms 17(1), 157–205 (1994)

10. Wallach, D.: A survey of peer-to-peer security issues. In: Okada, M., Pierce, B.C., Scedrov,
A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 42–57. Springer,
Heidelberg (2003)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. of the ACM SIGCOMM 2001 Conference, pp. 161–172
(2001)

12. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
p. 329. Springer, Heidelberg (2001)

13. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide-area
location androuting. Technical report (April 04, 2001)

14. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

15. Haeberlen, A., Kouznetsov, P., Druschel, P.: Peerreview: practical accountability for dis-
tributed systems. In: Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples, pp. 175–188 (2007)

Pharewell to Phishing

Taehwan Choi1, Sooel Son1, Mohamed G. Gouda1, and Jorge A. Cobb2

1 The University of Texas at Austin
{ctlight,samuel,gouda}@cs.utexas.edu

2 The University of Texas at Dallas
cobb@utdallas.edu

Abstract. The conventional wisdom has always been that users should
refrain from entering their sensitive data (such as usernames, passwords,
and credit card numbers) into http(or white) pages, but they can enter
these data into https (or yellow) pages. Unfortunately, this assumption
is not valid as it became clear recently that, through human mistakes or
Phishing or Pharming attacks, a displayed yellow page may not be the
same one that the user has intended to request in the first place. In this
paper, we propose to add a third class of secure web pages called brown
pages. We show that brown pages are more secure than yellow pages
especially in face of human mistakes and Phishing and Pharming attacks.
Thus users can enter their sensitive data into brown pages without worry.
We present a login protocol, called the Transport Login Protocol or TLP
for short. An https web page that is displayed on the browser is classified
brown by the browser if and only if this web page has been called into
the browser either through TLP or from within another brown page that
had been called earlier into the browser through TLP.

1 Introduction

When a user needs to display a web page on his browser, the user follows any
one of four direction rules, described below, to request that his browser calls the
page and displays it on the screen. If the requested page is an (insecure) http
page, then the browser calls the page and displays it without any firm guarantee
that the displayed page is the one that the user has requested. On the other
hand, if the requested page is a (secure) https page, then the browser displays
the page only after it has authenticated that the page is the one that the user
has requested. Unfortunately, as described below, the authentication procedure
is vulnerable to human mistakes, by the user, and to Phishing and Pharming
attacks [1], by adversarial web sites. And so it is possible that the displayed page
may not be the one requested by the user after all.

The user may not mind that the displayed page is different from the page that
he has requested for two reasons. First, both the displayed page and the page
that the user has requested have similar graphics and colors and the user may
not notice that the displayed page is actually not the one that he has requested
even in the presence of security indicators [2]. Second, the user may notice that
the displayed page is not the one that he has requested, but he may believe that

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 233–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 T. Choi et al.

the displayed page is a legitimate redirection that was requested by the page
that he has requested. In any case, the user may proceed to enter some sensitive
data, such as his credit card number, into the displayed page which may happen
to be an adversarial page.

This paper is dedicated to prevent these scenarios from occurring. Towards
this end, we propose to introduce a new class of https web pages, which we refer
to as brown pages. As discussed below, brown pages are secure against human
mistakes and Phishing and Pharming attacks. Thus, when a user requests that
his browser calls and displays an https page and then the browser displays the
page and classifies it brown, the user knows that the displayed page is indeed
the one that he has requested and so he can proceed to enter his sensitive data
into it.

In order for the browser to be able to classify a called https page brown, the
browser needs to call this page through a login protocol that is completely secure
against human mistakes and Phishing and Pharming attacks. In this paper, we
present and discuss the design and implementation of such a login protocol.

2 Attack Scenarios

In this section, we describe three attack scenarios, caused by human mistakes or
Phishing or Pharming attacks[3,4]. In each one of these scenarios, a user intends
to call into his browser a particular https page, but he ends up calling a wrong
https page into his browser.

1. Human Mistakes
A user intends to enter the URL https://www.amazon.com into the URL
box of his browser. But he enters the wrong URL https://www.anazon.com
by mistake.

2. Phishing Attacks
A user receives an email that urges the user to click on a link described as
leading to the web site https://www.amazon.com. By clicking on this link,
the user ends up in the wrong web site https://www.anazon.com.

3. Pharming Attacks
For the convenience of its users, the web site https://www.amazon.com
allows its users to call the web site using the alternative insecure URL
http://www.amazon.com. Now, the DNS of a user can be manipulated so
that when the user uses this insecure URL to request the web site, the user’s
DNS directs the request to an adversarial web site that redirects the user’s
browser to the wrong web site https://www.anazon.com.

In each one of these three scenarios, the user intended to call into his browser the
web site https://www.amazon.com, but he ends up calling the wrong web site
https://www.anazon.com. The user does not notice the switch, from https://
www.amazon.com to https://www.anazon.com, because the two web sites have

https://www.amazon.com
https://www.anazon.com
https://www.amazon.com
https://www.anazon.com
https://www.amazon.com
http://www.amazon.com
https://www.anazon.com
https://www.amazon.com
https://www.anazon.com
https://
www.amazon.com
https://www.anazon.com

Pharewell to Phishing 235

similar logos, graphics, and colors, and maybe similar URLs. Thus the user
proceeds to enter his sensitive information (such as username, password, or credit
card numbers) into the wrong web site. The objective of this paper is to outline
a proposal to counter these three attack scenarios.

One method to counter these scenarios is to advise the user to be careful and
check the URL box of the displayed https web page on his browser before he
enters his sensitive data into the displayed web page. However, it is very difficult
for a user to remember and follow this advice every time he requests an https
web page.

A second method to counter these scenarios is to make the browser check,
before it displays an https web page, that this page is indeed the one that the
user wants. Unfortunately, the browser can not tell whether or not the user wants
the web page whose URL is in the URL box.

The method that we adopt in this paper to counter these scenarios is as
follows. Browser B of user U displays an https page from a web site S when and
only when the following three conditions hold.

1. User U has requested the page.
2. Site S has verified that sometime in the past user U has registered and stored

his login data in site S.
3. Browser B has verified that sometime in the past user U has registered and

stored his login data in site S.

If any one of these three conditions does not hold, then the browser of user U
refuses to display the requested page. The correctness of this method is based
on the reasonable assumption that each web site in which user U registers is a
legitimate, rather than an adversarial, site. Next, we argue that this method can
counter the above three scenarios.

Consider the first scenario. If user U intends to request the web site https://
www.amazon.com, butby mistake requests the web site https://www.anazon.com,
then only one of two outcomes is possible. The most likely outcome is that user U
has not registered in the web site https://www.anazon.comand so the browser of
user U will not display the web page. The second outcome is that user U has reg-
istered in the web site https://www.anazon.com and so the browser will display
the legitimate web page of this site and user U will notice that the displayed page
is not the one that he wants.

Now consider the second and third scenarios. In these scenarios, the web site
https://www.anazon.com is an adversarial site and so user U has not registered
in it. Thus, browser of user U will not display the web page.

3 Countering the Attack Scenarios

In this section, we outline our proposal to modify the browser and some web
sites in order to counter the attack scenarios, caused by human mistakes and
Phishing and Pharming attacks, discussed in the previous section. Our proposal
consists of three parts.

https://
www.amazon.com
https://www.anazon.com
https: //www.anazon.com
https://www.anazon.com
https://www. anazon.com

236 T. Choi et al.

1. White, Yellow, and Brown Pages
We propose to modify the browser so that the browser classifies each dis-
played http web page as white, and classifies each displayed https web page
as either yellow or brown. As described below, a user should regard each
white page as insecure, each yellow page as mildly secure (which means
that the page is vulnerable to human mistakes and Phishing and Pharm-
ing attacks), and each brown page as highly secure (which means that the
page is secure against human mistakes and Phishing and Pharming attacks).

2. A New Login Protocol
We also propose to add a new login protocol to the browser and to some web
sites that need to be (extra) secure against human mistakes and Phishing
and Pharming attacks. We call this new login protocol the Transport Login
Protocol or TLP for short. When a user invokes TLP on his browser and
requests the browser to call a web page on a specified web site, the following
three steps are executed. First, the browser and the specified web site use
TLP to establish mutual authentication between each other. Second, if the
mutual authentication between the browser and the web site succeeds, then
the web site redirects the browser to an https web page. Third, the browser
calls the secure web page and, upon receiving it, the browser assigns it a
brown classification and displays it to the user.

3. Classification of Web Pages
The modified browser assigns a classification, white, yellow, or brown, to
each displayed web page, depending on how this page has been called into
the browser in the first place. Thus the same displayed https page can be
assigned a yellow classification if it is called into the browser one way, and
assigned a brown classification if it is called into the browser another way.
We adopt the following classification rules.
(a) Any http page, that is called into the browser, is classified white by the

browser.
(b) Any https page, that is called into the browser using our login protocol

TLP, is classified brown by the browser.
(c) Any https page, that is called into the browser using the TLS protocol[5],

is either classified yellow if this page is called from within a displayed
white or yellow page, or classified brown if this page is called from within
a displayed brown page.

When the browser displays a web page, the browser makes its classification of
the displayed page clear to the user by choosing an appropriate background
color for the URL box. If the displayed page is white (or yellow or brown re-
spectively), then the background color for the URL box is white (or yellow or
brown respectively). Note that the current browser already supports white and
yellow classifications of web pages. So the main contributions of this project are
merely the addition of brown classifications and the introduction of the new login
protocol TLP which can be used in calling brown web pages into the browser.

Pharewell to Phishing 237

(Recently, a green classification of https web pages has been introduced to dis-
tinguish those https pages that have extended validation certificates[6]. Clearly
some green pages, like yellow pages, can still be adversarial, and can still be
used in launching Phishing and Pharming attacks as described above. Hence-
forth, when we refer to yellow pages, we do mean yellow or green pages.)

The policy for entering sensitive data (such as usernames, passwords, and
credit card numbers) into a displayed web page depends on the classification of
the displayed page. This policy consists of the following three rules.

1. The White Page Rule
A user should never enter sensitive data into a white page.

2. The Brown Page Rule
A user can enter sensitive data into a brown page.

3. The Yellow Page Rule
Before a user can enter sensitive data into a yellow page, the user should
have prior knowledge that this data can be entered into this particular page,
and the user should check that the URL box of the displayed page has indeed
the URL of this particular page.

4 The Current Login Protocol

Our login protocol TLP, described in the next section, enjoys a number of nice
features that are not all present in any of the current login protocols. These nice
features are as follows.

1. Immunity to Attacks
When a user U uses TLP to log in a site S, then the login succeeds if and
only if both browser B of user U and site S can verify that user U has reg-
istered (and stored some login data) in site S sometime in the past.

2. No External Servers
All the login data, that are needed by user U to use TLP and successfully
log in site S, are stored on site S. Thus TLP does not need any external
servers to store some of the login data.

3. One-Time Login Data
In TLP, the login data, that are needed by user U to log in site S, are
updated after each successful login of U into S. Therefore, if an adversary
somehow steals the login data of user U in site S, then the stolen data
becomes useless after the next login of U into S.

4. Universal Passwords
Each user U needs only to memorize one password P , called the TLP uni-
versal password of U . User U employs his universal password in the TLP

238 T. Choi et al.

protocol to log in every web site. No web site S can deduce the TLP uni-
versal password of user U from the login data that user U stores in S or
from the messages exchanged between the browser of U and site S during
the execution of TLP.

5. Standard Cryptography
TLP uses only standard symmetric cryptography and standard secure hash
functions. Thus, every time the standards of symmetric cryptography or of
hash functions are updated, the standards of TLP are updated accordingly.

Next we argue that none of the login protocols, that have been proposed recently,
enjoys all these five features.

The current login protocol over the web consists of two protocols: the stan-
dard TLS protocol [5] (which is used to authenticate a secure web site by the
browser), and a non-standard password protocol (which is sometimes used to
authenticate the secure web site by the user and to authenticate the user by the
secure web site). As described in Section 2, this login protocol is vulnerable to
human mistakes and Phishing and Pharming attacks, and so it does not enjoy
feature 1.

This login protocol can be strengthened using Site Keys which allow a user to
authenticate the identity of the web site being logged in [7,8]. Unfortunately, Site
Keys can be stolen using Man-In-The-Middle Attacks. Thus the strengthened
protocol still does not enjoy feature 1.

The login protocol SRP[9,10] doest not enjoy any of features 3, 4, and 5 above.
The hash-based protocols, such as [11,12,13,14], enjoy the features 2, 4,

and 5. They also allow the web site to verify that the user has registered in the
site sometimes in the past. Unfortunately, they do no allow the user’s browser to
verify that the user has registered in the site sometime in the past. Thus these
protocols do not enjoy feature 1. Also, some of these protocols, for example [13],
do not enjoy feature 2.

The Passpet system[15] does not enjoy features 2 and 3.

5 The New Login Protocol

Our login protocol TLP is to be executed between browser B of user U and web
site S. Prior to executing TLP, user U needs to have registered with site S by
making its browser B store in S the following tuple of four data items:

(H(U), n, H(0, n, P, S), H2(1, n, P, S))

where

U is the username of the user,
B is the browser of user U ,
n is a nonce selected at random by browser B,
H is a standard secure hash function,
0 is the character zero,

Pharewell to Phishing 239

1 is the character one,
P is the TLP universal password of user U , and
S is the domain name of the web site.

Note that H(0, n, P, S) denotes the application of the secure hash function H
to the concatenation of the four data items 0, n, P , and S. Also, H2(1, n, P, S)
denotes two consecutive applications of function H to the concatenation of the
four data items 1, n, P , and S. After B stores this tuple in S, B forgets the
tuple completely.

Executing TLP between browser B and site S is intended to achieve five
objectives.

1. B checks that S is one of the sites where user U had previously registered
(and stored the above tuple of four data items).

2. S checks that user U has entered his universal password P to browser B.
3. Both B and S agree on a symmetric session key that they can use to encrypt

and decrypt their exchanged messages.
4. B selects a new random nonce n′ and stores the following tuple of four data

items in S in place of the above tuple:

(H(U), n′, H(0, n′, P, S), H2(1, n′, P, S))

(Therefore, each successful login of browser B into site S causes the tuple of
four data items that B had previously stored in S to be replaced by a new
tuple of four data items also provided by B.)

5. S sends to B the URL of the next https page that B needs to call, using TLS,
along with a cookie identifying user U and testifying that the login procedure
between U ’s browser and S, has been successful. When the next https page
is called into B, B assigns this page a brown classification. Moreover browser
B assigns any other https page, that is called using TLS from within this
brown page, a brown classification .

We adopt the following notation in describing a field in a message that is sent
during the execution of TLP.

[expression1] < expression2 >

This notation means that the value of expression1 is used as a symmetric key
to encrypt the value of expression2 before the message is sent.

To start executing TLP between B and S, user U enters three data items,
namely U , P , and S, to a local web page named httpl stored in browser B.
Then the execution of TLP proceeds with the following four message exchanges
between B and S.

httpl

240 T. Choi et al.

B → S : {Hello Message}
U

B ← S : {Hello-Reply Message}
n, [H(0, n, P, S)] < SN >

B → S : {Login Message}
U ,
[H(H2(1, n, P, S), SN)] < H(1, n, P, S), BN, H2(1, n′, P, S) >,
[H(BN, SN)] < n′, H(0, n′, P, S) >

B ← S : {Login-Reply Message}
[H(BN, SN)] < URL of next https web page >,
[H(BN, SN)] < cookie >

The hello message, from B to S, consists of the username of user U who wants
to log in site S. On receiving this message, S fetches the tuple

(H(U), n, H(0, n, P, S), H2(1, n, P, S))

that B had stored previously in S. Then S uses the data item H(0, n, P, S) as
a symmetric key to encrypt a new nonce SN that S selects at random. The
result of the encryption is denoted [H(0, n, P, S)] < SN > and is included in the
hello-reply message that is sent from S to B.

After B receives the hello-reply message, it computes H(0, n, P, S) and uses it
to obtain the nonce SN from the received message. Then, B selects at random
two nonces BN and n′, and uses the received SN and the computed BN and
n′ to construct the login message before sending it to site S.

After S receives the login message, it performs four tasks. First, it checks that
user U has indeed entered its TLP universal password P into browser B. Second,
S extracts the nonce BN from the received message, and now both B and S
know BN and SN . Third, S stores the tuple:
(H(U), n′, H(0, n′, P, S), H2(1, n′, P, S)) in place of the earlier tuple.
Fourth, S constructs the login-reply message and sends it to browser B.

After B receives the login-reply message, it concludes that S is one of the
web sites where user U has previously registered. Moreover, B gets the URL of
the https page that B needs to call next using TLS, along with a cookie that
identifies user U and testifies to the fact that the login procedure between U ’s
browser and S has been successful.

Figure 1 illustrates the five steps that are needed for a user to use TLP to log
in a web site in a domain say xyz.com.

1. The user calls a local web page, for convenience named the httpl page, on
his browser and enters his username, his TLP universal password, and the
site address www.xyz.com into this page.

2. The browser uses DNS to get the IP address of site www.xyz.com.
3. The browser and site www.xyz.com execute TLP. At the end, the browser

receives the URL of a web page on site online.xyz.com and a cookie.

xyz.com
httpl
www.xyz.com
www.xyz.com
www.xyz.com
online.xyz.com

Pharewell to Phishing 241

Fig. 1. Using TLP

4. The browser uses DNS to get the IP address of site online.xyz.com.
5. The browser and site online.xyz.com execute TLS, and the browser gets

the required https page at the end. The browser classifies this page brown.
It also classifies any other https page, that is called using TLS from within
this page, brown.

An argument for the correctness of TLP is presented in [16].

6 User Interface of TLP

As a proof of concept, we have developed a prototype of our Transport Login
Protocol TLP. The browser side of our prototype is developed on the Firefox
browser using the two technologies of Javascript and HTML. The web site side
of our prototype is developed on the Tomcat web server using four technologies:
Java, HTML, the JSP (Java Server Page) technology, and the MySQL database
technology. Note that the MySQL database technology is used to manage the
login tuples, of all users, that are stored in the web site.

We employed standard cryptography in our prototype. In particular, we em-
ployed the Secure Hash Algorithm SHA-1 for secure hash, and employed the
Advanced Encryption Standard AES for symmetric key cryptography.

The guiding principle in our prototype is to ensure that the user never enters
his TLP universal password into a web page that is supplied by a web site, but

online.xyz.com
online.xyz.com

242 T. Choi et al.

Fig. 2. User Interface of TLP

he can enter his password into a local web page that is supplied by his own
browser. It turns out that this principle is hard to fulfill in our prototype in the
light of the ”Same Origin Policy” that is adopted by the Javascript technology.
At the end, however, we were able to fulfill this principle by designing a novel
user interface for our prototype. We discuss this user interface next.

Figure 2 details the four steps that need to be taken by a user to log in a web
site www.xyz.com.

1. The user first enters httpl into the URL box of his browser and pushes
< return > ; see Figure 4a. This causes a display of the local page httpl to
appear as a small window on the left site of the screen; see Figure 4b.

2. The user enters his username and the name of the site www.xyz.com into
page httpl then clicks on the < submit > button in this page. This causes
page httpl to execute, update its own display, and send a Hello message
(the first message in TLP) to site www.xyz.com which replies by sending
back the web page http://www.xyz.com. This page contains the two fields,
named nonce and hash, of the Hello-Reply message (the second message in
TLP); see Figure 4c.

www.xyz.com
httpl
httpl
www.xyz.com
httpl
httpl
www.xyz.com
http://www.xyz.com

Pharewell to Phishing 243

3. The user copies the values of the two fields nonce and hash from the displayed
page http://www.xyz.com and enters them into page httpl. The user then
enters his password into page httpl and clicks on the < submit > button
of this page. This causes page httpl to execute, update its own display,
and send a Login message (the third message in TLP) to site www.xyz.com
which replies by sending back a new web page http://www.xyz.com. This
new page contains one field, named decrypt, of the Login-Reply message (the
last message in TLP); see Figure 4d.

4. The user copies the value of field decrypt from the displayed page http://
www.xyz.com and enters it into page httpl. The user then clicks on the
< submit > button of page httpl. This causes page httpl to execute,
compute the next https page, say page https://online.xyz.com, that needs
to be called into the browser, and redirects the browser to call this page using
TLS and display it on the screen. Note that in this case the browser assigns
the displayed https page a brown classification, and so the background color
of the URL box of the displayed page becomes brown as shown in Figure 2e.

Because the browser has classified the displayed page https://online.xyz.com
brown, then if the user clicks on any link (of an https page) in page https://
online.xyz.com, then the browser will classify the newly called page brown
as well.

7 Concluding Remarks

In this paper, we present a comprehensive proposal to counter human mistakes
and Phishing and Pharming attacks that may occur when a user attempts to log
in a secure web site. Our proposal is based on two ideas. First, we introduce a
new classification, brown, of secure https web pages. When the browser of a user
U classifies a displayed page brown, user U should conclude that the displayed
page is secure and can enter his sensitive data into it. Second, we design a new
login protocol, named TLP, that is secure against human mistakes and Phishing
and Pharming attacks. The browser of a user U uses TLP to classify a displayed
page brown according to two rules:

1. The displayed page is called into the browser using TLP.
2. The displayed page is called into the browser, using TLS, from within another

brown page that was displayed earlier on the browser.

Note that TLP is not intended to replace TLS. On the contrary, our vision
assigns complementary roles to be played by TLP and TLS: TLP can be used
first to securely log in a web domain, then TLS can be used later to securely go
from one web site to another within the logged in domain.

Note also that some mildly secure web domains may feel that they are in no
danger of facing Phishing or Pharming attacks because adversaries have little
incentive to launch such attacks against these domains. (Examples of such do-
mains are those that host electronic reviewing and handling of submitted papers

http://www.xyz.com
httpl
httpl
httpl
www.xyz.com
http://www.xyz.com
http://
www.xyz.com
httpl
httpl
httpl
https://online.xyz.com
https://online.xyz.com
https://
online.xyz.com

244 T. Choi et al.

to conferences and journals.) These web domains can keep on employing TLS,
as they do presently, both for logging in a domain and for going from one web
site to another within this domain.

A nice feature of TLP is that a user can use the same username and same
(TLP universal) password to securely log in any web site in the Internet. This
means that the user needs only to memorize one username and one password for
all web sites. Therefore it is reasonable to demand that each user chooses a long
string, say of sixteen characters, to be his TLP universal password. And so TLP
becomes naturally secure against online and offline dictionary attacks.

Acknowledgement

The work of Mohamed G. Gouda was supported in part by the US National
Science Foundation under grant CNS-0520250.

References

1. Ollmann, G.: The Pharming Guide,
http://www.ngssoftware.com/papers/ThePharmingGuide.pdf

2. Dhamija, R., Tygar, J., Hearst, M.: Why Phishing Works. In: The Proceedings of
the Conference on Human Factors in Computing Systems (CHI 2006) (2006)

3. Group, A.P.W.: Phising activity trends report, (September 2007),
http://www.antiphishing.org/reports/apwg report sept 2007.pdf

4. McMillan, R.: Gartner: Consumers to lose $2.8 billion to phishers in 2006 (2006),
http://www.networkworld.com/news/2006/
110906-gartner-consumers-to-lose-28b.html

5. Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., Wright, T.: Transport
Layer Security (TLS) Extensions. RFC 4366 (Proposed Standard) (April 2006)

6. Franco, R.: Website identification and extended validation certificates in IE7 and
other browsers. IEBlog (November 2005)

7. PassMark Security, http://www.passmarksecurity.com
8. Bank of America, http://www.bankofamerica.com/privacy/sitekey/
9. Wu, T.: The Secure Remote Password Protocol. In: Proceedings of the 1998 In-

ternet Society Network and Distributed System Security Symposium, pp. 97–111
(1998)

10. Wu, T.: SRP-6: Improvements and Refinements to the Secure Remote Password
Protocol. Submission to the IEEE P1363 Working Group

11. Gabber, E., Gibbons, P.B., Matias, Y., Mayer, A.: A Convenient Method for Se-
curely Managing Passwords. In: Financial Cryptography (Feburuary 1997)

12. Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure Applications of Low-Entropy
Keys. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 121–134. Springer,
Heidelberg (1998)

13. Halderman, J.A., Waters, B., Felten, E.W.: A Convenient Method for Securely
Managing Passwords. In: 14th International World Wide Web Conference (May
2005)

http://www.ngssoftware.com/papers/ThePharmingGuide.pdf
http://www.antiphishing.org/reports/apwg_report_sept_2007.pdf
http://www.networkworld.com/news/2006/
110906-gartner-consumers-to-lose-28b.html
http://www.passmarksecurity.com
http://www.bankofamerica.com/privacy/sitekey/

Pharewell to Phishing 245

14. Gouda, M.G., Liu, A.X., Leung, L.M., Alam, M.A.: SPP: An anti-phishing single
password protocol. Comput. Netw. 51(13), 3715–3726 (2007)

15. Yee, K.P., Sitaker, K.: Passpet: convenient password management and phishing
protection. In: SOUPS 2006: Proceedings of the second symposium on Usable pri-
vacy and security, pp. 32–43. ACM, New York (2006)

16. Choi, T., Son, S., Gouda, M.G.: Pharwell to Phishing: Secure Direction and Redi-
rection over the Web. Technical Report TR-08-19, Austin, TX, USA (April 2008)

The Asynchronous Bounded-Cycle Model

Peter Robinson� and Ulrich Schmid

Technische Universität Wien
Embedded Computing Systems Group (E182/2)

Treitlstrasse 1-3, A-1040 Vienna (Austria)
{robinson,s}@ecs.tuwien.ac.at

Abstract. This paper shows how synchrony conditions can be added to
the purely asynchronous model in a way that avoids any reference to mes-
sage delays and computing step times, as well as any global constraints
on communication patterns and network topology. Our Asynchronous
Bounded-Cycle (ABC) model just bounds the ratio of the number of
forward- and backward-oriented messages in certain (“relevant”) cycles
in the space-time diagram of an asynchronous execution. We show that
clock synchronization and lock-step rounds can easily be implemented
and proved correct in the ABC model, even in the presence of Byzan-
tine failures. We also prove that any algorithm working correctly in the
partially synchronous Θ-Model also works correctly in the ABC model.
Finally, we relate our model to the classic partially synchronous model,
and discuss aspects of its applicability in real systems.

Key words: Fault-tolerant distributed algorithms, partially synchronous
models, clock synchronization.

1 Introduction

Adding synchrony conditions, relating the occurrence times of certain events in a
distributed system to each other, is the “classic” approach for circumventing im-
possibility results like [9] in fault-tolerant distributed computing. The following
models in between synchrony and asynchrony, which are all sufficiently strong
for solving the pivotal consensus problem, have been proposed in literature: (1)
The Archimedean model [20] bounds the ratio between maximum end-to-end
delays and minimal computing step times. (2) The classic partially synchronous
models [7, 5] and the semi-synchronous models [18, 3] bound message delays as
well as the ratio of minimal and maximal computing step times. (3) The Θ-
Model [21,4,22] bounds the ratio between the maximal and minimal end-to-end
delay of messages simultaneously in transit. (4) The FAR-Model [8] assumes
lower bounded computing step times and message delays with finite average. (5)
The Weak Timely Link (WTL) models of [1, 13, 11] assume that only messages
sent via certain links have bounded end-to-end delay. All these models refer to
� This research is supported by the Austrian Science Foundation (FWF) projects

P17757 and P20529. A brief announcement appeared in the proceedings of PODC’08.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 246–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Asynchronous Bounded-Cycle Model 247

individual message delays and/or computing step times, and most of them in-
volve explicit time bounds and system-wide (global) constraints. Somewhat an
exception is (6) the MMR model [17] suggested for implementing failure detec-
tors in systems with process crashes, which assumes certain order properties for
round-trip responses.

This paper shows how to add synchrony assumptions—sufficiently strong for
implementing lock-step rounds, and hence for solving any important distributed
computing problem—to the asynchronous model in a way that entirely avoids
(1) any reference to message delays and computing step times, and (2) any global
constraint on communication patterns and network topology. More specifically,
our Asynchronous Bounded-Cycle (ABC) model bounds the ratio of the number
of forward- and backward-oriented messages in certain cycles (“relevant cycles”)
in the space-time diagram of an asynchronous execution. In fact, there is only
one scenario that is admissible in the purely asynchronous model but not in
the ABC model: A chain C1 of k1 consecutive messages, starting at process q
and ending at p, that properly “spans” (i.e., covers w.r.t. real-time, see Fig. 2)
another causal chain C2 from q to p involving k2 � k1Ξ messages, for some
model parameter Ξ > 1.

Consequently, individual message delays can be arbitrary, ranging from 0 to
any finite value; they may even continuously increase. There is no relation at all
between computing step times and/or message delays at processes that do not
exchange messages; this also includes purely one-way communication (“isolated
chains”). For processes that do exchange messages, message delays and step times
in non-relevant cycles and isolated chains can also be arbitrary. Only cumulative
delays of chains C1 and C2 in relevant cycles must yield the event order as shown
in Fig. 2. That is, the sum of the message delays along C2 must not become so
small that C1 could span k1Ξ or more messages in C2. ABC algorithms can
exploit the fact that this property allows to “time out” relevant message chains,
and hence failure detection.

2 The ABC Model

We consider a system of n distributed processes, connected by a (not necessar-
ily fully-connected) point-to-point network with finite but unbounded message
delays. We neither assume FIFO communication channels nor an authentication
service, but we do assume that processes know the sender of a received message.

Every process executes an instance of a distributed algorithm and is modeled
as a state machine. Its local execution consists of a sequence of atomic, zero-
time computing steps, each involving the reception of exactly one1 message, a
state transition, and the sending of zero or more messages to a subset of the
processes in the system. Since the ABC model is entirely time-free, i.e., does not
introduce any time-related bounds, we restrict our attention to message-driven
algorithms [4, 14]: Computing steps at process p are exclusively triggered by a
1 An algorithm cannot learn anything from receiving multiple asynchronous messages

at the same time, cp. [6].

248 P. Robinson and U. Schmid

single incoming message at p, with an external “wake-up message” initiating p’s
very first computing step; we assume that this very first step occurs before any
message from another process is received.

Among the n processes, at most f may be Byzantine faulty. A faulty process
may deviate arbitrarily from the behavior of correct processes as described above;
it may of course just crash as well, in which case it possibly fails to complete some
computing step and does not take further steps. In order to properly capture
the interaction of correct and faulty processes, we conceptually distinguish the
receive event that triggers a computing step and the computing step itself. If
the process is correct, both occur at the same time. In case of a faulty receiver
process, however, we separate the reception of a message, which is not under
the receiver’s control but initiated by the network, from the processing of this
message, which is under the receiver’s control and hence arbitrary in case of a
faulty receiver. Consequently, even crashed processes eventually receive messages
sent by correct processes, and since processes can only receive one message per
step, there is a total order on the receive events at every process.

We can now specify admissible executions for our asynchronous message-
driven system, cp. [4]: (1) If an infinite number of messages are sent to a correct
process, it must execute infinitely many computing steps, and (2) every message
sent by a correct process must be received by every [correct or faulty] recipient
within finite time. Note that we do not say anything about messages sent by
faulty processes here, which are usually unconstrained anyway.

The ABC model just puts one additional constraint on admissible executions.
It is based on the space-time diagram [12], which captures the causal flow of
information in an admissible execution α. In order to properly include faulty
processes, we just drop every message sent by a faulty process (along with both
its send and receive step) in the space-time diagram. Note that a similar message
dropping can be used for exempting certain messages, say, of some specific type
or sent/received by some specific processes, from the ABC synchrony condition.
After all, it is the particular algorithm that determines whether the order of
certain receive events matters, i.e., whether the involved cycle is relevant or not.

Definition 1 (Execution Graph). The execution graph Gα is the digraph
corresponding to the space-time diagram of an admissible execution α, with nodes
V (Gα) = Φ corresponding to the receive events in α, and edges reflecting the
happens-before relation [12] without its transitive closure: (φi, φj) is in the edge
relation →α : Φ × Φ if and only if one of the following two conditions holds:
1. The receive event φi triggers a computing step where a message m is sent

from a correct process p to a process q; event φj is the receive event of m at
q. We call the edge φi →α φj non-local edge or simply message in Gα.

2. The events φi and φj both take place at the same processor p and there exists
no event φk in α occurring at p with i < k < j. The edge φi →α φj is said
to be a local edge.

We will simply write G and → instead of Gα and →α when α is clear from the
context. Note that we will also consider execution graphs of finite prefixes of
executions.

The Asynchronous Bounded-Cycle Model 249

A causal chain φ1 → · · · → φl is a directed path in the execution graph,
which consists of messages and local edges. The length of a causal chain D is
the number of non-local edges (i.e., messages) in D, denoted by |D|. A cycle Z
in G is a subgraph of G that corresponds to a cycle in the undirected shadow
graph Ḡ of G.2 Since messages cannot be sent backwards in time, every cycle can
be decomposed into at least 2 causal chains having opposite directions. We now
take a closer look at such cycles, which capture all causal information relevant
for ABC algorithms.

Definition 2 (Relevant Cycles). Let Z be a cycle in the execution graph, and
partition the edges of Z into the backward edges Ẑ− and the forward edges Ẑ+

as follows: Identically directed edges are in the same class, and

|Z+| � |Z−|, (1)

where Z− ⊆ Ẑ− and Z+ ⊆ Ẑ+ are the restrictions of Ẑ− resp. Ẑ+ to non-local
edges (messages). The orientation of the cycle Z is the direction of the forward
edges Z+, and Z is said to be relevant if all local edges are backward edges, i.e.,
if Ẑ+ = Z+; otherwise it is called non-relevant.

Fig. 2 shows an example of a relevant cycle: Its orientation is opposite to the
direction of all local edges, and the backward messages are traversed oppositely
w.r.t. their direction when traversing the cycle according to its orientation. Bear
in mind, however, that labelling the edges in a cycle as forward and backward is
only of local significance. For example, in Fig. 1, the forward message e in cycle
X is actually a backward one in cycle Y (i.e., e ∈ X+ and e ∈ Y −).

p0

p1

p2

p3

eX

Y

Fig. 1. An execution graph containing relevant cycles X, Y , and the combined cycle
X ⊕ Y , consisting of all edges except the oppositely oriented edge e

Definition 3 (ABC Synchrony Condition). Let Ξ be a given rational num-
ber Ξ > 1, and let G be the execution graph of an execution α. Then, α is
admissible in the ABC model if, for every relevant cycle Z in G, we have

|Z−|
|Z+| < Ξ. (2)

2 The shadow graph Ḡ has the same set of vertices as G and, for every edge in G,
there is a corresponding undirectional edge in Ḡ.

250 P. Robinson and U. Schmid

p

q

r

s

m1
l1 m2 m3

m4 m5

l2

m6

m7 m8

m9
Z

Fig. 2. A relevant cycle Z, where a causal chain C2 = m1l1m2 . . . m5l2 is spanned by
the “slow” message chain C1 = m6m7m8m9. Message m3 has zero delay.

Note carefully that, compared to the purely asynchronous model, there is no
other constraint in the ABC model: Only the ratio of the number of backward vs.
forward messages in relevant cycles is constrained. There is no reference to end-
to-end delays, no delay constraints whatsoever are put on individual messages,
and none on messages in non-relevant cycles and isolated chains. Nevertheless,
in Section 3, we will prove that the ABC synchrony condition is sufficient for
simulating lock-step rounds, and hence for solving e.g. consensus by means of
any synchronous consensus algorithm.3

3 Clock Sychronization in the ABC Model

In this section, we show that the simple fault-tolerant tick generation algorithm
introduced in [22] can be used for clock synchronization in the ABC model. It
tolerates up to f Byzantine process failures in a system of n � 3f + 1 processes
adhering to the ABC model. In Algorithm 1, every process p maintains a local
variable k that constitutes p’s local clock as follows: Every process initially sets
k ← 0 and broadcasts the message (tick 0); for simplicity, we assume that a
process sends messages also to itself. If a correct process p receives f + 1 (tick
�) messages (catch-up rule, line 3), it can be sure that at least one of them was
sent by a correct process that has already reached clock value l. Therefore, p
can safely catch-up to l and broadcast (tick k + 1),. . . ,(tick l). If some process p
receives n−f � 2f +1 (tick k) messages (advance rule, line 6) and thus advances
its clock to k + 1, it follows that at least f + 1 of those messages will also be
received by every other correct process, which then executes line 3. Hence, all
correct processes will eventually receive n − f (tick k) messages and advance
their clocks to k + 1.

We will now prove that the algorithm guarantees progress of clocks and a
certain synchrony condition, which can be stated in terms of consistent cuts in
the execution graph. Note that using causality as a reference—rather than a
common point in time, as in traditional clock synchronization—is natural in the
time-free ABC model. Since the classic definition of consistent cuts does not take
3 Weaker (“eventual”) variants of the ABC model are introduced in [19].

The Asynchronous Bounded-Cycle Model 251

Algorithm 1. Byzantine Clock Synchronization

1: VAR k: integer ← 0;
2: send (tick 0) to all [once];

/* catch-up rule */
3: if received (tick l) from f + 1 distinct processes and l > k then
4: send (tick k + 1),. . . ,(tick l) to all [once];
5: k ← l;

/* advance rule */
6: if received (tick k) from n − f distinct processes then
7: send (tick k + 1) to all [once];
8: k ← k + 1;

faulty processes into account, we will use the following correct-restricted version
tailored to our execution graphs:

Definition 4. Let G be an execution graph and denote by ∗→ the reflexive and
transitive closure of the edge relation →. A subset S of events in G is called
consistent cut, if (1) for every correct process p, there is an event φ ∈ S taking
place at p, and (2) the set S is left-closed for ∗→; i.e., S contains the whole causal
past of all events in S.

Given an event φp at process p, we denote by Cp(φp) the clock value after
executing the computing step corresponding to φp. Recall that the latter need
not be correctly executed if p is faulty. The clock value of a [correct] process p in
the frontier of a consistent cut S is denoted by Cp(S); it is the last clock value
of p w.r.t. ∗→ in S. Since it follows immediately from the code of Algorithm 1
that local clock values of correct processes are monotonically increasing, Cp(S)
is the maximum clock value at p over all events φp ∈ S.

We first show that correct clocks make progress perpetually.

Lemma 1 (One Step Progress). Let S be a consistent cut such that all correct
processes p satisfy Cp(S) � k, for a fixed k � 0. Then there is a consistent cut
S′ where every correct process has set its clock to at least k + 1.

Proof. If all correct processes pi have a (possibly distinct) clock value ki � k in
the frontier of S, the code of Algorithm 1 ensures that they have already sent
(tick k). Since all messages in transit are eventually delivered, there must be a
(not necessarily consistent) cut S′′, in the frontier of which every correct process
has received n−f tick k messages and thus set its clock to k+1. The left-closure
of S′′ yields the sought consistent cut S′. ��

Theorem 1 (Progress). In every admissible execution of Algorithm 1 in a
system with n � 3f + 1 processes, the clock of every correct process progresses
without bound.

252 P. Robinson and U. Schmid

Proof. The theorem follows from a trivial induction argument using Lemma 1,
in conjunction with the fact that the cut S0 comprising the initial event φ0

p of
every process p is trivially consistent and satisfies Cp(S0) � 0. ��
Lemma 2 (First Advance). If a correct process q sets its clock to k � 1 in
event ψq, then there is a correct process p that sets its clock to k using the advance
rule in some event ψp with ψp

∗→ ψq.

Proof. If q uses the advance rule for setting its clock to k in ψq, the lemma is
trivially true. If q uses the catch-up rule instead, it must have received f +1 (tick
k) messages, at least one of which was sent by a correct process q′ in an event
ψq′

∗→ ψq. If q′ also sent its (tick k) via the catch-up rule (line 3), we apply the
same reasoning to q′. Since every process sends (tick k) only once and there are
only finitely many processes, we must eventually reach a correct process p that
sends (tick k) in event ψp

∗→ ψq via the advance rule. ��
Lemma 3 (Causal Chain Length). Assume that a correct process sets its
clock to k + m, for some k � 0, m � 0, at some event φ′, or has already done
so. Then, there is a causal chain D of length |D| � m involving correct processes
only, which ends at φ′ and starts at some event φ where a correct process sets
its clock to k using the advance rule (k � 1) or the initialization rule (k = 0).

Proof. Let p be the process where φ′ occurs. If p has set its clock in some earlier
computing step φ′′′ ∗→ φ′, we just replace φ′ by φ′′′ and continue with the case
where p sets its clock to k + m in φ′. If p sets its clock in φ′ using the catch-up
rule, applying Lemma 2 yields a correct process that sets its clock to k + m in
an event ψ

∗→ φ′ using the advance rule. To prove Lemma 3, it hence suffices to
assume that p sets its clock to k + m in φ′ via the advance rule (k + m � 1) or
the initialization rule (k + m = 0), as we can append the chains cut before to
finally get the sought causal chain D.

The proof is by induction on m. For m = 0, the lemma is trivially true. For
m > 0, at least n−2f � f + 1 correct processes must have sent (tick k +m−1).
Let q be any such process, and φ′′ be the event in which (tick k + m− 1) is sent.
Since q also sets its clock to k + m − 1 at φ′′, we can invoke Lemma 2 in case
k+m−1 � 1 to assure that the advance rule is used in φ′′; for k+m−1 = 0, the
initialization rule is used in φ′′. We can hence apply the induction hypothesis
and conclude that there is a causal chain D′ of length at least m − 1 leading
to φ′′. Hence, appending q’s (tick k + m − 1) message [and the initially cut off
chains] to D′ provides D with |D| � m. ��
The following Lemma 4 will be instrumental in our proof that Algorithm 1
maintains synchronized clocks. It reveals that when a correct process p updates
its clock value in some event φ′, then all messages of correct processes of a certain
lower tick value must have already been received by p, i.e., must originate from
the causal cone of φ′.

Lemma 4 (Causal Cone). For some k � 0, suppose that Cp(φ′) = k + 2Ξ
at the event φ′ of a correct process p. Then, for every 0 � � � k, process p has
already received (tick �) from every correct process.

The Asynchronous Bounded-Cycle Model 253

Proof. The general proof idea is to show that the arrival of (tick �) in some event
φ′′ after φ′ would close a relevant cycle in which the synchrony assumption (2)
is violated. See Fig. 3 for a graphical representation of the scenario described
below.

Let Cp(φ′) = k + 2Ξ and assume, for the sake of contradiction, that (tick �)
from some correct process q was not yet received by p before or at φ′, for some
� � k. Consider the last message that p received from q before (or at) φ′. If such
a message exists, we denote its send event at q as ψ′; otherwise, we simply define
ψ′ to be the (externally triggered) initial computing step at q.

From Lemma 3, we know that there is a causal chain D = φ′
1 → · · · → φ′ of

length |D| � k + 2Ξ − (� + 1), where a (tick � + 1) message is sent in φ′
1 by some

correct process p1 via the advance rule and, by assumption, Cp(φ′) = k + 2Ξ.
Since φ′

1 executes the advance rule, p1 must have received n−f (tick �) messages
to do so. Denoting by 0 � f ′ � f the actual number of faulty processes among
the n � 3f + 1 ones, it follows that n − f − f ′ � f + 1 of these messages were
sent by correct processes; we denote this set by P1.

Since Theorem 1 ensures progress of all correct processes, there must be an
event ψ1, coninciding with or occuring after ψ′, in which q broadcasts (tick �).
Eventually, this message is received by p in some event φ′′, which must be after φ′

since by assumption (tick �) was not received before (or at) φ′. Furthermore, we
claim that q receives at least n− f ′ − f (tick �) messages from correct processes
after (or at) event ψ1; let P2 be that set. Otherwise, q would have received at
least n−f ′−(n−f ′−f)+1 = f +1 (tick �) from correct processes by some event
ψ′

1
∗→ ψ1, and therefore would have broadcast (tick �) already in ψ′

1 according
to the catch-up rule.

Since P1 ∪P2 is of size at most 2n− 2f ′ − 2f and we have only n− f ′ correct
processes, it follows by the pigeonhole principle that 2n− 2f ′ − 2f − (n − f ′) =
n − 2f − f ′ � n − 3f > 0 correct processes are in P1 ∩ P2. Choose any process
p0 ∈ P1 ∩ P2, which broadcasts its (tick �) in some event φ0. This message is
received at q in some event ψ2, and at p1 in event φ1.

It is immediately apparent from Fig. 3 that the causal chains φ0 → φ1
∗→ D

∗→
φ′′, φ0 → ψ2, ψ1

∗→ ψ2, and ψ1 → φ′′ form a relevant cycle Z: The number of
backward messages is |Z−| = |D|+1 � k−�+2Ξ � 2Ξ, since � � k; the number
of forward messages |Z+| is 2. But this yields |Z−|

|Z+| � 2Ξ
2 = Ξ, contradicting the

ABC synchrony assumption (2). ��

We can now easily prove that Algorithm 1 maintains the following synchrony
condition:

Theorem 2 (Synchrony). For any consistent cut S in an admissible execution
of Algorithm 1 in a system with n � 3f+1 processes, we have |Cp(S) − Cq(S)| �
2Ξ for all correct processes p, q.

Proof. Assume that the maximum clock value in the frontier of S is k +2Ξ, and
let p be a correct process with Cp(S) = k + 2Ξ. From Lemma 4, we know that
p must have seen (tick �) from every correct process q for any � � k. Since S is

254 P. Robinson and U. Schmid

p

q

p1

p0

φ′
1

|D| � (k + 2Ξ) − (� + 1)

φ′

ψ1

�

φ′′

φ0

� φ1

�

ψ2

n − f
z}|{

Z

ψ′

Fig. 3. Proof of Lemma 4

consistent, all the corresponding send events at q must be within S, such that
Cq(S) � k. ��

Even though the ABC model is entirely time-free, we can immediately transfer
the above synchrony property to real-time cuts according to [15], to derive the
following theorem:

Theorem 3 (Clock Precision). Let Cp(t) denote the clock value of process p
at real-time t. For any time t of an admissible execution of Algorithm 1 in a
system with n � 3f +1 processes, we have |Cp(t) − Cq(t)| � 2Ξ for all correct
processes p, q. ��

Finally, we will show how to build a lock-step round simulation in the ABC
model atop of Algorithm 1. A lock-step round execution proceeds in a sequence
of rounds r = 1, 2, . . . , where all correct processes take their round r comput-
ing steps (consisting of receiving the round r − 1 messages4, executing a state
transition, and broadcasting the round r messages for the next round) exactly
at the same time.

We use the same simulation as in [22], which just considers clocks as phase
counters and introduces rounds consisting of 2Ξ phases. Algorithm 2 shows
the code that must be merged with Algorithm 1; the round r messages are
piggybacked on (tick k) messages every 2Ξ phases, namely, when k/(2Ξ) = r.
The round r computing step is encapsulated in the function start(r) in line 7;
start(0) just sends the round 0 messages that will be processed in the round 1
computing step.

To prove that this algorithm achieves lock-step rounds, we need to show that
all round r messages from correct processes have arrived at every correct process
p before p enters round r + 1, i.e., executes start(r + 1).

Theorem 4 (Lock-Step Rounds). In a system with n � 3f + 1 processes,
Algorithm 2 merged with Algorithm 1 correctly simulates lock-step rounds in the
ABC model.
4 For notational convenience, we enumerate the messages with the index of the previ-

ous round.

The Asynchronous Bounded-Cycle Model 255

Algorithm 2. Lock-Step Round Simulation

1: VAR r: integer ← 0;
2: call start(0);

3: Whenever k is updated do
4: if k/(2Ξ) = r + 1 then
5: r ← r + 1
6: call start(r)

7: procedure start(r:integer)
8: if r > 0 then
9: read round r − 1 messages
10: execute round r computation
11: send round r messages

Proof. Suppose that a correct process p starts round r+1 in event φ. By the code,
Cp(φ) = k with k/(2Ξ) = r + 1, i.e., k = 2Ξr + 2Ξ. By way of contradiction,
assume that the round r message, sent by some correct process q in the event
ψ, arrives at p only after φ. By the code, Cq(ψ) = k′ with k′/(2Ξ) = r, i.e.,
k′ = 2Ξr. However, Lemma 4 reveals that p should have already seen (tick 2Ξr)
from q before event φ, a contradiction. ��

Remark: We note that the above proof(s) actually establish uniform [10] lock-
step rounds, i.e., lock-step rounds that are also obeyed by faulty processes until
they fail for the first time: If the messages sent by faulty processes also obey
the ABC synchrony condition (2), then the proof of the key Lemma 4 actually
establishes a uniform causal cone property: Assuming that (i) process q performs
correctly up to and including at least one more step after event ψ′, and (ii) p
works correctly up to and including event φ′, then p would receive (though not
necessarily process) the message from q in φ′′, thereby closing a relevant cycle
that violates Ξ. Hence, p must have received all messages from its causal cone
by φ′ already, which carries over to a uniform version of Theorem 4.

4 Model Indistinguishability

In this section, we will develop a non-trivial “model indistinguishability” argu-
ment in order to show that any algorithm designed for the Θ-Model [21, 4, 22]
also works correctly in the ABC model. It is non-trivial, since there are (many)
admissible ABC executions which are not admissible in the Θ-Model. Neverthe-
less, no simulation will be involved in our argument; the original algorithms can
just be used “as is” in the ABC model. This “timing invariance” of algorithms and
their properties confirms again that timing constraints are not really essential
for solving certain distributed computing problems.

More specifically, provided that Ξ < Θ, we will show that every algorithm
designed and proved correct for the Θ-Model preserves all its timing-independent

256 P. Robinson and U. Schmid

properties when executed in the ABC model. Note that the algorithms analyzed
in Section 3 belong to this class.5

Like the ABC model, the Θ-Model [21,4,22] is a message-driven model, with-
out real-time clocks, and hence also relies on end-to-end delays. If τ+(t) resp.
τ−(t) denotes the (unknown) maximum resp. minimum delay of all messages
in transit system-wide between correct processes at time t, it just assumes that
there is some Θ > 1 such that

τ+(t)
τ−(t)

� Θ (3)

at all times t in all admissible executions. In the simple static Θ-Model (which
is sufficient for our model indistinguishability argument, since it has been shown
in [22] to be equivalent to the general Θ-Model from the point of view of al-
gorithms), it is assumed that there are (unknown) upper resp. lower bounds
∞ > τ+ � τ+(t) resp. 0 < τ− � τ−(t) on the end-to-end delays of all correct
messages in all executions, the ratio of which matches the (known) Θ = τ+

τ− .
Formally, fix some algorithm A and let ASYNC be the set of executions of

A running in a purely asynchronous message-driven system; note that we con-
sider timed executions here, i.e., executions along with the occurence times of
their events. A property P is a subset of the admissible executions in ASYNC,
i.e., a property is defined via the executions of A that satisfy it. Let M be the
set of admissible executions of A in some model M that augments the asyn-
chronous model, by adding additional constraints like the ABC synchrony con-
dition. Clearly, M is the intersection of some model-specific safety and liveness
properties in ASYNC. We say that an execution α is in model M if α ∈ M, i.e., if
α is admissible in M . If M ⊆ P , we say that A satisfies property P in the model
M. A property P is called timing-independent , if α ∈ P ⇒ α′ ∈ P for every pair
of causally equivalent executions α, α′, i.e., executions where Gα = Gα′ .

First, using a trivial model-indistinguishability argument, it is easy to show
that properties of an algorithm proved to hold in the ABC model MABC also
hold in the Θ-Model MΘ, for any Θ < Ξ: The following Theorem 5 exploits
the fact that the relevant cycles in the execution graph Gα, corresponding to an
admissible execution α in the Θ-Model, also satisfy the ABC synchrony condi-
tion (2), i.e., that α is an admissible execution in the ABC model as well.

Theorem 5. For any Θ < Ξ, it holds that MΘ ⊆ MABC . Hence, if an algo-
rithm satisfies a property P in the ABC model, it also satisfies P in the Θ-Model.

Proof. If Z is any relevant cycle in Gα, then no more than |Z+|Θ backward
messages can be in Z; otherwise, at least one forward-backward message pair
would violate (3). It follows that |Z−|/|Z+| � Θ < Ξ as required. Hence, MΘ ⊆
MABC ⊆ P , since the algorithm satisfies P in the ABC model. ��
5 It is not possible to derive our results from the Θ-based analysis in [22], however,

since this would require carrying over timing-dependent properties. And indeed, the
Θ-variant [22] of our synchronizer (Algorithm 2) requires rounds consisting of 3Θ
phases, rather than 2Ξ phases as in the ABC model.

The Asynchronous Bounded-Cycle Model 257

The converse of Theorem 5 is not true, however: The time-free synchrony as-
sumption (2) of the ABC model allows arbitrary small end-to-end delays for
individual messages, violating (3) for every Θ. From a timing perspective, the
ABC model is indeed strictly weaker than the Θ-Model, hence MABC �⊆ MΘ.
Nevertheless, Theorem 6 below shows that, given an arbitrary finite execution
graph G in MABC , it is always possible to assign end-to-end delays ∈ (1, Ξ)
to the individual messages without changing the event order at any process.
Let τ be such a delay assignment function, and Gτ be the weighted execution
graph obtained from G by adding the assigned delays to the messages. Since
Θ-algorithms are message-driven, without real-time clocks, G and Gτ are indis-
tinguishable for every process. Consequently, an algorithm that provides certain
timing-independent properties when being run in the Θ-Model also maintains
these properties in the ABC model, see Theorem 8.

Theorem 6. For every finite ABC execution graph G, there is an end-to-end de-
lay assignment function τ , such that the weighted execution graph Gτ is causally
equivalent to G and all messages in Gτ satisfy (3).

Proof. The (quite involved) proof, which utilizes a non-standard cycle-space of
a graph and an algebraic treatment of a system of linear inequalities using a
variant of Farkas’ lemma, can be found in [19]. ��
In order to formally prove the claimed “model indistinguishability” of the ABC
model and the Θ-Model, we proceed with the following Lemma 5. It says that
processes cannot notice any difference in finite prefixes in the ABC model and
in the Θ-Model, and therefore make the same state transitions.

Lemma 5 (Safety Equivalence). Ifanalgorithmsatisfiesa timing-independent
safetypropertyS in theΘ-Model, thenS alsoholds in theABCmodel, foranyΞ < Θ.

Proof. Suppose, by way of contradiction, that there is a finite prefix β of an
ABC model execution α ∈ MABC , where S does not hold. Furthermore, let β′

be a finite extension of β such that all messages sent by correct processes in β
arrive in β′, and denote the execution graph of β′ by Gβ′ . From Theorem 6, we
know that there is a delay assignment τ such that the synchrony assumption (3)
of the Θ-Model is satisfied for all messages in the timed execution graph Gτ

β′ ,
while the causality relation in Gβ′ and Gτ

β′ (and since Gτ
β′ ⊇ Gτ

β also in Gβ and
Gτ

β) is the same.
We will now construct an admissible execution γ in the Θ-Model, which has

the same prefix Gτ
β′ : If t is the greatest occurrence time of all events in Gτ

β′ ,
we simply assign an end-to-end delay of τ+ to all messages still in transit at
time t and to all messages sent at a later point in time. Note that γ may be
totally different from the ABC-execution α w.r.t. the event ordering after the
common prefix β′. Anyway, γ is admissible in the Θ-Model since (3) holds for
all messages, but violates S, which provides the required contradiction. ��
Unfortunately, we cannot use the same reasoning for “transfering” liveness prop-
erties, since finite prefixes of an execution are not sufficient to show that “some-
thing good” eventually happens. Nevertheless, Theorem 7 below reveals that all

258 P. Robinson and U. Schmid

properties satisfiable by an algorithm in the Θ-Model are actually safety prop-
erties, in the following sense: For every property P (which could be a liveness
property like termination) satisfied by A in MΘ, there is a (typically stronger)
safety property P ′ ⊆ P (like termination within time X) that is also satisfied
by A in MΘ. Hence, there is no need to deal with liveness properties here at all.

For our proof, we utilize the convenient topological framework introduced
in [2], where safety properties correspond to the closed sets of executions in
ASYNC, and liveness properties correspond to dense sets. If a model M is
determined solely by safety properties S1, . . . , Sk, then the set M =

⋂k
i=1 Si—

and therefore the model M—is closed.

Theorem 7 (Safety-Only in Closed Models). Let M be a closed model
augmenting the asynchronous model, and let M ⊆ ASYNC be the set of all
admissible executions of an algorithm A in M . To show that A satisfies some
arbitrary property P in M , it suffices to show that A satisfies the property P’ =
P∩M, which is a safety propery.

Proof. Suppose that A satisfies some property P ⊆ ASYNC in M , i.e., M ⊆ P .
Then, M = M∩ P and since M is closed, it follows that P ′ = M∩ P is closed
(in ASYNC) as well. But this is exactly the definition of a safety property
P ′ ⊆ ASYNC and, since M ⊆ P ′ ⊆ P , it indeed suffices to show that A
satisfies P ′ in M . ��

Lemma 6. The ABC model and the Θ-Model are both closed.

Proof. We just need to show that the set MΘ resp. MABC of executions in
the Θ-Model resp. in the ABC model is closed. If some execution violated the
end-to-end timing assumption (3) of the Θ-Model resp. the ABC synchrony con-
dition (2), there would be a finite prefix within which this violation has happened.
This characterizes a safety property and hence a closed set in ASYNC. ��

Theorem 7 in conjunction with Lemma 6 reveals that every property satisfiable
in the Θ-Model is a safety property. Hence, Lemma 5 finally implies Theorem 8,
which complements Theorem 5.

Theorem 8. All timing-independent properties satisfied by an algorithm in the
Θ-Model also hold in the ABC model, for any Ξ < Θ. ��

5 Relation to the Classic Partially Synchronous Model

In this section, we relate the ABC model to the perpetual partially synchronous
model (ParSync) introduced in [7]. ParSync stipulates a bound Φ on relative
computing speeds and a bound ∆ on message delays, relative to an (external)
discrete global clock, which ticks whenever a process takes a step: During Φ ticks
of the global clock, every process takes at least one step, and if a message m
was sent at time k to a process p that subsequently performs a receive step at
or after time k + ∆, p is guaranteed to receive m.

The Asynchronous Bounded-Cycle Model 259

First of all, we note that the ABC model and ParSync are equivalent in
terms of solvability of timing-independent problems in fully-connected networks:
In [22], it was shown that the Θ-Model and ParSync are equivalent is this regard:
Since the synchrony parameters Φ, ∆ of the ParSync model imply bounded (and
non-zero) end-to-end delays, any Θ-algorithm can be run in a ParSync system if
Θ = Θ(Φ, ∆) is chosen sufficiently large. Conversely, using the lock-step round
simulation for the Θ-Model provides a “perfect” ParSync system (Φ = 1 and
∆ = 0), which obviously allows to execute any ParSync algorithm atop of it.
The claimed equivalence thus follows from the model indistinguishability of the
ABC model and the Θ-Model established in Section 4.

This problem equivalence does not imply that the models are indeed equiva-
lent, however. First, as shown below, there are problems that can be solved in
ABC model but not in ParSync in case of not fully-connected networks. More-
over, whereas we can choose Ξ such that every execution of a message-driven
algorithm in ParSync with Φ, ∆ is also admissible in the ABC model for some
Ξ > Θ(Φ, ∆), we can even conclude from MABC ⊃ MΘ that some ABC exe-
cutions cannot be modeled in ParSync. To investigate this issue in more detail,
we use the taxonomy of partially synchronous models introduced in [6], which
delimits the exact border between consensus solvability and impossibility: It dis-
tinguishes whether (c) communication is synchronous (∆ holds) or asynchronous,
whether (p) processes are synchronous (Φ holds) or asynchronous, whether (s)
steps are atomic (send+receive in a single step) or non-atomic (separate send
and receive steps), whether (b) send steps can broadcast or only unicast, and
whether (m) message delivery is (globally) FIFO ordered or out-of-order.

We will argue below that the ABC model model must be mapped to the case of
asynchronous communication, asynchronous processes, atomic steps, broadcast
send and out-of-oder delivery. Using the corresponding “binary encoding” (c =
0, p = 0, s = 1, b = 1, m = 0) in [6, Table 1], it turns out that consensus is
not solvable in the resulting model. Of course, the apparent contradiction to
the solvability of consensus in the ABC model is due to the ABC synchrony
condition, which cannot be properly expressed in the framework of [6].

Asynchronous Communication and Asynchronous Processes: Consider
a 2-player game where the Prover first chooses Ξ and the Adversary, knowing Ξ,
chooses a pair (Φ, ∆). Finally, the Prover has to choose an execution satisfying (2)
for Ξ; the Prover wins iff this execution violates the adversary-chosen parameters
(Φ, ∆). The Prover has a winning strategy: It suffices to choose any execution
containing a relevant cycle as shown in Fig. 2, which respects (2) but lets |Z−|
be greater than both Φ and ∆: While the (slow) message m6 from q to r is in
transit, process q executes more than ∆ steps. Moreover, neither process r nor
s execute a step during the more than Φ steps of q. As a consequence, both
communication and processes must be considered asynchronous (c = 0, p = 0).

Atomic Steps and Broadcast: Whereas it is clear that out-of-order deliv-
ery (m = 0) makes it more difficult to solve problems, one may be wondering
whether the “favorable” choices s = 1 and b = 1, rather than the ABC synchrony

260 P. Robinson and U. Schmid

condition, make consensus solvable in the ABC model. [6, Table 1] reveals that
this is not the case: All entries corresponding to p = 0, c = 0, m = 0 are the same
(consensus impossible), irrespectively of the choice of b and s. And indeed, the
assumption of atomic receive+broadcast steps in the ABC model’s definition in
Section 2 is just a simplifying abstraction: Every non-atomic broadcast execution
(= multiple unicast steps) can be mapped to a causally equivalent atomic re-
ceive+broadcast step execution with appropriately adjusted end-to-end delays.6

Another major difference between ParSync and the ABC model results from
the cumulative and non-global character of the ABC synchrony condition. Since
(2) needs to hold only in relevant cycles, which are in fact defined by the spe-
cific algorithm employed, the ABC model is particularly suitable for modeling
systems with not fully-connected communication graphs: For choosing Ξ, only
the cumulative end-to-end delay ratio over certain paths counts.

Consider the execution shown in Fig. 5, for example, which corresponds to
a system where process q exchanges messages directly with p (over a 1-hop
path Pqpq), and indirectly with s (over a 2-hop path Pqrsrq via r). As long
as the sum of the delays along Pqrsrq is less than the cumulative delay of Ξ
instances of Pqpq , the individual delays along the links between q, r and r, s are
totally irrelevant. In the VLSI context, for instance, this gives more flexibility
for place-and-route, as well as some robustness against dynamic delay variations.
By contrast, in ParSync, very conservative values of Φ, ∆ would be needed to
achieve a comparable flexibility; obviously, this would considerably degrade the
achievable performance system-wide.

p1

p2

q1
φ φ′

Fig. 4. An execution of a system imple-
menting bounded-size FIFO channels.
If the order of φ and φ′ changed, there
would be a relevant cycle violating (2)
for Ξ = 4.

p

q

r

s

Fig. 5. The long delay on the link
between q and r is compensated by the
fast delay on the link between r and s

In case of not fully-connected networks, there are even situations which cannot
be modeled in ParSync at all. Consider the message-pattern given in Fig. 4 in a
system with Ξ = 4, for example: The ABC synchrony condition ensures FIFO
order of the messages sent from p2 to q1, even when their delay is unbounded
(and may even continuously grow, as e.g. in a formation of fixed-constellation
clusters of spacecraft that move away from each other): If there was a reordering
6 The ABC model can hence also be used for making classic distributed algorithms

results applicable to non-atomic models like the Real-Time Model introduced in [16].

The Asynchronous Bounded-Cycle Model 261

of φ and φ′, a relevant cycle with Ξ = 5 would be formed, which is impossible.
Note that processes p1, p2 make unbounded progress while a message to q1 is in
transit here. Hence, as in the example of Fig. 2 mentioned before, the problem
cannot be solved in ParSync. Clearly, such message ordering capabilities are very
useful in practice, e.g., for implementing stable identifiers, bounded-message size,
single source FIFOs etc.

6 Conclusions and Future Work

We have introduced a novel partially synchronous system model, the ABC model,
which is completely time-free and thus rests on a causality-based synchrony
condition only. We showed that it is sufficiently strong for implementing lock-step
rounds and, hence, for solving any important distributed computing problem,
including consensus. We also proved that algorithms designed for the Θ-Model
also work correctly in the ABC model. Part of our future work is devoted to
exploiting the ABC model in the chase for the weakest system model for solving
consensus, and to the analysis of the ABC model’s coverage in real systems, in
particular, VLSI Systems-on-Chip.

Acknowledgments

We are indebted to Martin Biely, Josef Widder, Martin Hutle, Matthias Függer,
Heinrich Moser, and Bernadette Charron-Bost for their contributions to the ABC
model.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the 23rd ACM symposium on Principles of Distributed Computing (PODC
2004), St. John’s, Newfoundland, Canada, pp. 328–337. ACM Press, New York
(2004)

2. Alpern, B., Schneider, F.B.: Defining liveness, Tech. report, Ithaca, NY, USA
(1984)

3. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the time to
reach agreement in the presence of timing uncertainty. Journal of the ACM
(JACM) 41(1), 122–152 (1994)

4. Biely, M., Widder, J.: Optimal message-driven implementation of omega with mute
processes. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
110–121. Springer, Heidelberg (2006)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1), 77–97 (1987)

7. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35(2), 288–323 (1988)

262 P. Robinson and U. Schmid

8. Fetzer, C., Schmid, U., Süßkraut, M.: On the possibility of consensus in asyn-
chronous systems with finite average response times. In: Proceedings of the 25th
International Conference on Distributed Computing Systems (ICDCS 2005), Wash-
ington, DC, USA, pp. 271–280. IEEE Computer Society, Los Alamitos (2005)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

10. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mul-
lender, S. (ed.) Distributed Systems, 2nd edn., pp. 97–145. Addison-Wesley, Read-
ing (1993)

11. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Brief announcement: Chasing the
weakest system model for implementing omega and consensus. In: Datta, A.K.,
Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 576–577. Springer, Heidelberg
(2006)

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

13. Malkhi, D., Oprea, F., Zhou, L.: Ω meets paxos: Leader election and stability
without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005, vol. 3724, pp.
199–213. Springer, Heidelberg (2005)

14. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pp. 215–
226. Elsevier Science Publishers B.V, Amsterdam (1989)

15. Mattern, F.: On the relativistic structure of logical time in distributed systems.
In: Parallel and Distributed Algorithms, pp. 215–226. Elsevier Science Publishers
B.V, Amsterdam (1992)

16. Moser, H., Schmid, U.: Optimal clock synchronization revisited: Upper and lower
bounds in real-time systems. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, pp. 95–109. Springer, Heidelberg (2006)

17. Mostefaoui, A., Mourgaya, E., Raynal, M., Travers, C.: A time-free assumption to
implement eventual leadership. Parallel Processing Letters 16, 189–208 (2006)

18. Ponzio, S., Strong, R.: Semisynchrony and real time. In: Segall, A., Zaks, S. (eds.)
WDAG 1992. LNCS, vol. 647, pp. 120–135. Springer, Heidelberg (1992)

19. Robinson, P., Schmid, U.: The Asynchronous Bounded-Cycle Model, Research Re-
port 24/2008, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria (2008)

20. Vitányi, P.M.B.: Distributed elections in an archimedean ring of processors. In:
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pp. 542–547. ACM Press, New York (1984)

21. Widder, J., Le Lann, G., Schmid, U.: Failure detection with booting in partially
synchronous systems. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC
2005. LNCS, vol. 3463, pp. 20–37. Springer, Heidelberg (2005)

22. Widder, J., Schmid, U.: Achieving synchrony without clocks, Research Report
49/2005, Technische Universität Wien, Institut f. Technische Informatik (submit-
ted)

Tutorial Abstract

Virtual Infrastructure�

Shlomi Dolev

Department of Computer Science
Ben Gurion University of the Negev, Israel

dolev@cs.bgu.ac.il

Ad-hoc and mobile sensor networks are chaotic in nature. The goal of the tutorial
is to present several techniques to form virtual infrastructure for such mobile ad-
hoc networks. Different approaches (some of which are inherently self-stabilizing
[2,3]) will be presented:

• The use of randomization to overcome the random nature of the network. In
particular the use of random walks to obtain a middleware that supports group
communication abstractions [11].
• The use of directed antennas to define ad-hoc virtual infrastructure. The di-
rected antennas are used to define virtual tilling of geographic regions. The tilling
definition serves as a backbone for communication procedures [7].
• The use of GPS service to define a static tilling of a geographic region. Each tile
resembles a (base station free) cell in a cellular network. The mobile hosts that
happen to be present at a cell implement the base station function. Whenever
a mobile host arrives to a populated cell, it copies the state of the virtual base
station, whenever the mobile host leaves the cell it erases the virtual state. Thus
each tile is in fact a virtual automaton that may implement a router or home
location server [1,4,8,9].
• One can imagine a virtual automaton deciding to move to a non mobile-host-
deserted location to make sure it survives, or even move in order to collect
information [5,6].
• Implementation of a virtual automaton by the moving hosts requires an in-
vestigation of security issues. One would like to avoid the possibility of an host
to know or corrupt the state of the virtual automaton, reactive secret sharing
techniques are suggested for this sake [10].

References

1. The virtual infrastructure project,
http://groups.csail.mit.edu/tds/vi-project

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17 11, 643–644 (1974)

3. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

� Partially supported by the Rita Altura Trust Chair in Computer Sciences.

S. Kulkarni and A. Schiper (Eds.): SSS 2008, LNCS 5340, pp. 263–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://groups.csail.mit.edu/tds/vi-project

264 S. Dolev

4. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.L.: Geoquorums:
implementing atomic memory in mobile d hoc networks. Distributed Computing
18 2, 125–155 (2005)

5. Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A., Welch, J.L.:
Virtual Mobile Nodes for Mobile Ad Hoc Networks. In: The 18th International
Conference on Distributed Computing, DISC 2004 (2004)

6. Dolev, S., Gilbert, S., Schiller, E., Shvartsman, A.A., Welch, J.L.: Autonomous
virtual mobile nodes. In: DIALM-POMC, pp. 62–69 (2005)

7. Dolev, S., Herman, T., Lahiani, L.: Polygonal broadcast, secret maturity, and the
firing sensors. Ad Hoc Networks 4 4, 447–486 (2006)

8. Dolev, S., Gilbert, S., Lahiani, L., Lynch, A.L., Nolte, T.: Timed Virtual Stationary
Automata for Mobile Networks. In: 9th International Conference on Principles of
Distributed Systems (OPODIS 2005), pp. 96–112 (2005)

9. Dolev, S., Lahiani, L., Lynch, N., Nolte, T.: Self-stabilizing Mobile Node Location
Management and Message Routing. In: Self-Stabilizing Systems (SSS 2005), pp.
96–112 (2005)

10. Dolev, S., Lahiani, L., Yung, M.: Secret swarm unitreactive k-secret sharing. In:
Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 123–137. Springer, Heidelberg (2007)

11. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group commu-
nication in ad hoc networks. IEEE Trans. Mob. Comput. 5 7, 893–905 (2006)

Author Index

Arora, Anish 1, 32, 203
Arumugam, Mahesh 4

Bein, Doina 141
Bickson, Danny 79
Brodsky, Alex 218

Choi, Taehwan 233
Clouser, Thomas 124
Cobb, Jorge A. 156, 233

Datta, Ajoy K. 109, 141
Dekar, Lyes 19
Deläet, Sylvie 63
Demirbas, Murat 203
Dolev, Danny 79
Dolev, Shlomi 263

Gilbert, Seth 188
Gouda, Mohamed G. 156, 233
Gupta, Chitwan K. 141

Hoch, Ezra N. 79

Kakugawa, Hirotsugu 173
Kheddouci, Hamamache 19

Larmore, Lawrence L. 109, 141
Li, Jing 32

Lindenberg, Scott 218
Lynch, Nancy 188

Ma, Di 47
Manne, Fredrik 94
Masuzawa, Toshimitsu 173
Mitra, Sayan 188
Mjelde, Morten 94

Nesterenko, Mikhail 63, 124
Nolte, Tina 188

Pilard, Laurence 94

Reiter, Michael 2
Robinson, Peter 246

Scheideler, Christian 124
Schmid, Ulrich 3, 246
Son, Sooel 233

Tixeuil, Sébastien 63, 94
Tsudik, Gene 47

Vemula, Priyanka 109
Vora, Adnan 63

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Talks
	Keynote: Primitives for Physical Trust
	Keynote: Trustworthy Services and the Biological Analogy
	Keynote: Distributed Algorithms and VLSI

	MAC Layer Protocols
	A Distributed and Deterministic TDMA Algorithm for Write-All-With-Collision Model
	Introduction
	Preliminaries
	Write-All-With-Collision (WAC) Model and Collision Detectors
	Problem Statement
	Assumptions

	TDMA Slot Assignment Algorithm
	Outline of the Algorithm
	Reset Computation and Slot/Color Assignment
	Illustration

	Extensions
	Dealing with Failure of Neighbors
	Dealing with Addition of Sensors
	Improving the Bandwidth Allocation

	Related Work
	Conclusion
	References

	Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs
	Introduction
	Distance-k Self-stabilizing Algorithms
	A Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs
	The Rules of Our Algorithm
	Execution Example
	Convergence and Correctness of the Algorithm

	The Application of the b-Coloring Self-stabilizing Algorithm in Distributed Data Mining
	Conclusion
	References

	Wireless Networks I
	Duty Cycle Stabilization in Semi-mobile Wireless Networks
	Introduction
	Duty Cycling for Elevator Sensing
	Contributions
	Organization of the Paper

	System Model and Problem Statement
	Duty-Cycle Coordination in a Multi-token Ring
	Synchronization-Exchange Protocol Design
	Synchronization-Exchange Protocol Variables
	Synchronization-Exchange Protocol Actions
	Synchronization-Exchange Protocol Correctness
	Synchronization-Exchange Protocol Analysis

	Model Extensions and Protocol Refinements
	Related Work
	Conclusions
	References

	DISH: Distributed Self-Healing
	Introduction
	Assumptions
	Sensor Network Assumptions
	Adversarial Model

	Public Key-Based Schemes
	A Simple Public Key Scheme
	Key-Insulated and Intrusion-Resilient Schemes
	Public Key Summary

	A Simple Symmetric Key Scheme
	DISH: Distributed Self-Healing
	General Idea
	DISH Details

	Analysis
	ADV Migration Strategies
	Analytical Results

	Discussion
	Attack Model Limitations
	Communication and Sensor Model Limitations
	Drawbacks of Reactive Sponsoring

	Conclusion
	References

	Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks
	Introduction
	Computation Model Description, Assumptions, Notation and Definitions
	Impossibility of Standalone Solution to Neighborhood Discovery
	Abstract Universe Detectors
	Necessary Node Density
	Snare
	Necessary Node Density Condition

	Necessary Transmission Range
	The Sybil Attack Resilient Neighborhood Discovery Algorithm $\cal SAND$
	Detector Implementation and Future Research
	References

	Stabilizing Algorithms I
	Self-stabilizing Numerical Iterative Computation
	Introduction
	Model and Problem Definition
	Our Proposed Solution
	Analysis of SS-Iterative
	Experimental Results
	Extension to the Asynchronous Model
	Discussion
	Relation to Perturbation Theory
	Relation to Convex Optimization

	References

	A Self-stabilizing $\frac{2}{3}$-Approximation Algorithm for the Maximum Matching Problem
	Introduction
	Self-stabilizing Algorithms
	Related Work
	Our Contribution

	The Algorithm
	Predicates and Variables
	Rules and Functions

	Correct Stabilization
	Stabilization Time
	Distributed Adversarial Daemon
	Distributed Fair Daemon
	Interaction with the Maximal Matching

	Conclusion
	References

	Self-Stabilizing Leader Election in Optimal Space
	Introduction
	Related Work
	Contributions
	Outline of Paper

	Preliminaries
	Self-Stabilization and Silence

	The Leader Election Algorithm SSLE
	A Simplified Algorithm
	The Problem of Fictitious Leaders
	Formal Definition of SSLE
	Overview of SSLE
	Color Waves and Energy
	Example Execution

	Proof of SSLE
	Additional Notation
	Elimination of Inferior Processes
	Convergence after Elimination of Inferior Processes

	Conclusion
	References

	Stabilizing Algorithms II
	Tiara: A Self-stabilizing Deterministic Skip List
	Introduction
	Model
	Core Tiara Description, Correctness Proof and Complexity Estimate
	The Bottom Component of Tiara (b-Tiara) and Stabilization of Grow
	The Skip List Component of Tiara (s-Tiara)
	Stabilization of Trim in b-Tiara

	Tiara Usage, Implementation and Extensions
	Future Work
	References

	Local Synchronization on Oriented Rings
	Introduction
	Preliminaries
	Local Mutual Exclusion
	Self-stabilization and Silence

	The Dining Philosophers Problem
	Algorithm A
	Formal Definition of Algorithm A

	Algorithm B
	Formal Definition of Algorithm B
	Proofs for Algorithm B

	Algorithm C
	Formal Definition of Algorithm C

	A General Transformer on the Ring
	Formal Definition of the Transformer

	Conclusion and Future Work
	References

	Stabilization of Max-Min Fair Networks without Per-flow State
	Introduction
	Notation and Stabilization
	NetworkModel
	Rigid-Source Signaling
	Adaptive-Source Signaling
	Stabilization of Max-Min Fairness
	Concluding Remarks
	References

	Wireless Networks II
	Convergence Time Analysis of Self-stabilizing Algorithms in Wireless Sensor Networks with Unreliable Links
	Introduction
	Background
	Related Works
	Contribution of This Paper

	Preliminary
	Abstract Computational Model
	Computational Model for Sensor Networks
	Self-stabilization

	Lightweight Transformation Scheme
	Transformation Algorithm
	Legitimate Configurations

	Convergence Time Analysis in Sensor Networks
	On Upper Bound of Convergence Time
	Spanning Tree Algorithm BFS
	Maximal Independent Set Algorithm MIS
	Maximal Independent Set Algorithm CDS

	Conclusion
	References

	Self-stabilizing Mobile Robot Formations with Virtual Nodes
	Introduction
	Related Work
	Virtual Stationary Automata
	Motion Coordination Using Virtual Nodes
	Solution Using Virtual Node Layer
	Client Node Algorithm (CN)
	Virtual Stationary Node Algorithm (VN)

	Correctness of Algorithm
	Self-stabilization
	Definitions and General Results
	Self-stabilization of Our Algorithm
	Relationship between L_{MC} and Reachable States

	References

	An Application of Specification-Based Design of Self-stabilization to Tracking in Wireless Sensor Networks
	Introduction
	Model
	Adopting Ordinary Refinements for Specification-Based Design
	Refinement of Stalk to the Implementation Level
	Brief Summary of Stalk
	Application of Theorem 1 to Stalk

	Related Work
	Fault-Tolerance Preserving Refinements
	Compositional Frameworks for Self-stabilization

	Concluding Remarks
	References

	Security and System Models
	Our Brothers’ Keepers: Secure Routing with High Performance
	Introduction
	Preliminaries
	Design and Implementation
	Key Assignment
	Distributed Identification, Authentication and Authorization
	Message Authentication
	Our Brothers’ Keepers
	Randomized Routing

	Evaluation
	Latency and throughput
	Capacity

	Related Work
	Conclusion and Future Work
	References

	Pharewell to Phishing
	Introduction
	Attack Scenarios
	Countering the Attack Scenarios
	The Current Login Protocol
	The New Login Protocol
	UserInterfaceofTLP
	Concluding Remarks
	References

	The Asynchronous Bounded-Cycle Model
	Introduction
	The ABC Model
	Clock Sychronization in the ABC Model
	Model Indistinguishability
	Relation to the Classic Partially Synchronous Model
	Conclusions and Future Work
	References

	Tutorial Abstract
	Tutorial Abstract Virtual Infrastructure
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

